7ni3

From Proteopedia

Jump to: navigation, search

CRYSTAL STRUCTURE OF NATIVE HUMAN MYELOPEROXIDASE IN COMPLEX WITH CPD 3

Structural highlights

7ni3 is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:BMA, CA, CL, CSO, FUC, HEM, NAG, UE8
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PERM_HUMAN Defects in MPO are the cause of myeloperoxidase deficiency (MPOD) [MIM:254600. A disorder characterized by decreased myeloperoxidase activity in neutrophils and monocytes that results in disseminated candidiasis.[1] [2] [3] [4] [5]

Function

PERM_HUMAN Part of the host defense system of polymorphonuclear leukocytes. It is responsible for microbicidal activity against a wide range of organisms. In the stimulated PMN, MPO catalyzes the production of hypohalous acids, primarily hypochlorous acid in physiologic situations, and other toxic intermediates that greatly enhance PMN microbicidal activity.

Publication Abstract from PubMed

Myeloperoxidase is a promising therapeutic target for treatment of patients suffering from heart failure with preserved ejection fraction (HFpEF). We aimed to discover a covalent myeloperoxidase inhibitor with high selectivity for myeloperoxidase over thyroid peroxidase, limited penetration of the blood-brain barrier, and pharmacokinetics suitable for once-daily oral administration at low dose. Structure-activity relationship, biophysical, and structural studies led to prioritization of four compounds for in-depth safety and pharmacokinetic studies in animal models. One compound (AZD4831) progressed to clinical studies on grounds of high potency (IC(50), 1.5 nM in vitro) and selectivity (>450-fold vs thyroid peroxidase in vitro), the mechanism of irreversible inhibition, and the safety profile. Following phase 1 studies in healthy volunteers and a phase 2a study in patients with HFpEF, a phase 2b/3 efficacy study of AZD4831 in patients with HFpEF started in 2021.

Discovery of AZD4831, a Mechanism-Based Irreversible Inhibitor of Myeloperoxidase, As a Potential Treatment for Heart Failure with Preserved Ejection Fraction.,Inghardt T, Antonsson T, Ericsson C, Hovdal D, Johannesson P, Johansson C, Jurva U, Kajanus J, Kull B, Michaelsson E, Pettersen A, Sjogren T, Sorensen H, Westerlund K, Lindstedt EL J Med Chem. 2022 Sep 8;65(17):11485-11496. doi: 10.1021/acs.jmedchem.1c02141. , Epub 2022 Aug 25. PMID:36005476[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Kizaki M, Miller CW, Selsted ME, Koeffler HP. Myeloperoxidase (MPO) gene mutation in hereditary MPO deficiency. Blood. 1994 Apr 1;83(7):1935-40. PMID:8142659
  2. Nauseef WM, Brigham S, Cogley M. Hereditary myeloperoxidase deficiency due to a missense mutation of arginine 569 to tryptophan. J Biol Chem. 1994 Jan 14;269(2):1212-6. PMID:7904599
  3. Nauseef WM, Cogley M, McCormick S. Effect of the R569W missense mutation on the biosynthesis of myeloperoxidase. J Biol Chem. 1996 Apr 19;271(16):9546-9. PMID:8621627
  4. DeLeo FR, Goedken M, McCormick SJ, Nauseef WM. A novel form of hereditary myeloperoxidase deficiency linked to endoplasmic reticulum/proteasome degradation. J Clin Invest. 1998 Jun 15;101(12):2900-9. PMID:9637725 doi:10.1172/JCI2649
  5. Romano M, Dri P, Dadalt L, Patriarca P, Baralle FE. Biochemical and molecular characterization of hereditary myeloperoxidase deficiency. Blood. 1997 Nov 15;90(10):4126-34. PMID:9354683
  6. Inghardt T, Antonsson T, Ericsson C, Hovdal D, Johannesson P, Johansson C, Jurva U, Kajanus J, Kull B, Michaelsson E, Pettersen A, Sjogren T, Sorensen H, Westerlund K, Lindstedt EL. Discovery of AZD4831, a Mechanism-Based Irreversible Inhibitor of Myeloperoxidase, As a Potential Treatment for Heart Failure with Preserved Ejection Fraction. J Med Chem. 2022 Aug 25. doi: 10.1021/acs.jmedchem.1c02141. PMID:36005476 doi:http://dx.doi.org/10.1021/acs.jmedchem.1c02141

Contents


PDB ID 7ni3

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools