7sgm

From Proteopedia

Jump to: navigation, search

Crystal structure of a Fab variant containing a fluorescent noncanonical amino acid with blocked excited state proton transfer and in complex with its antigen, CD40L

Structural highlights

7sgm is a 9 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:DV7, NAG, PEG, TMO, TRS
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CD40L_HUMAN Defects in CD40LG are the cause of X-linked immunodeficiency with hyper-IgM type 1 (HIGM1) [MIM:308230; also known as X-linked hyper IgM syndrome (XHIM). HIGM1 is an immunoglobulin isotype switch defect characterized by elevated concentrations of serum IgM and decreased amounts of all other isotypes. Affected males present at an early age (usually within the first year of life) recurrent bacterial and opportunistic infections, including Pneumocystis carinii pneumonia and intractable diarrhea due to cryptosporidium infection. Despite substitution treatment with intravenous immunoglobulin, the overall prognosis is rather poor, with a death rate of about 10% before adolescence.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Function

CD40L_HUMAN Mediates B-cell proliferation in the absence of co-stimulus as well as IgE production in the presence of IL-4. Involved in immunoglobulin class switching.[11] Release of soluble CD40L from platelets is partially regulated by GP IIb/IIIa, actin polymerization, and an matrix metalloproteinases (MMP) inhibitor-sensitive pathway.[12]

Publication Abstract from PubMed

The fluorescent non-canonical amino acid (fNCAA) L-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) contains a photoacidic 7-hydroxycoumarin (7-HC) side chain whose fluorescence properties can be tuned by its environment. In proteins, many alterations to 7-HCAA's fluorescence spectra have been reported including increases and decreases in intensity and red- and blue-shifted emission maxima. The ability to rationally design protein environments that alter 7-HCAA's fluorescence properties in predictable ways could lead to novel protein-based sensors of biological function. However, these efforts are likely limited by a lack of structural characterization of 7-HCAA-containing proteins. Here, we report the steady-state spectroscopic and x-ray crystallographic characterization of a 7-HCAA-containing antibody fragment (in the apo and antigen-bound forms) in which a substantially blue-shifted 7-HCAA emission maximum ( approximately 70 nm) is observed relative to the free amino acid. Our structural characterization of these proteins provides evidence that the blue shift is a consequence of the fact that excited state proton transfer (ESPT) from the 7-HC phenol has been almost completely blocked by interactions with the protein backbone. Furthermore, a direct interaction between a residue in the antigen and the fluorophore served to further block proton transfer relative to the apoprotein. The structural basis of the unprecedented blue shift in 7-HCAA emission reported here provides a framework for the development of new fluorescent protein-based sensors.

Structural Basis for Blocked Excited State Proton Transfer in a Fluorescent, Photoacidic Non-Canonical Amino Acid-Containing Antibody Fragment.,Henderson JN, Simmons CR, Mills JH J Mol Biol. 2022 Apr 30;434(8):167455. doi: 10.1016/j.jmb.2022.167455. Epub 2022 , Jan 13. PMID:35033559[13]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
0 reviews cite this structure
No citations found

See Also

References

  1. Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, Bajorath J, Grosmaire LS, Stenkamp R, Neubauer M, et al.. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993 Jan 29;72(2):291-300. PMID:7678782
  2. Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, Ugazio AG, Notarangelo LD, Levinsky RJ, Kroczek RA. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):539-41. PMID:7679206 doi:http://dx.doi.org/10.1038/361539a0
  3. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):541-3. PMID:8094231 doi:http://dx.doi.org/10.1038/361541a0
  4. Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK, et al.. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993 Feb 12;259(5097):990-3. PMID:7679801
  5. Macchi P, Villa A, Strina D, Sacco MG, Morali F, Brugnoni D, Giliani S, Mantuano E, Fasth A, Andersson B, et al.. Characterization of nine novel mutations in the CD40 ligand gene in patients with X-linked hyper IgM syndrome of various ancestry. Am J Hum Genet. 1995 Apr;56(4):898-906. PMID:7717401
  6. Saiki O, Tanaka T, Wada Y, Uda H, Inoue A, Katada Y, Izeki M, Iwata M, Nunoi H, Matsuda I, et al.. Signaling through CD40 rescues IgE but not IgG or IgA secretion in X-linked immunodeficiency with hyper-IgM. J Clin Invest. 1995 Feb;95(2):510-4. PMID:7532185 doi:http://dx.doi.org/10.1172/JCI117692
  7. Katz F, Hinshelwood S, Rutland P, Jones A, Kinnon C, Morgan G. Mutation analysis in CD40 ligand deficiency leading to X-linked hypogammaglobulinemia with hyper IgM syndrome. Hum Mutat. 1996;8(3):223-8. PMID:8889581 doi:<223::AID-HUMU5>3.0.CO;2-A 10.1002/(SICI)1098-1004(1996)8:3<223::AID-HUMU5>3.0.CO;2-A
  8. Lin Q, Rohrer J, Allen RC, Larche M, Greene JM, Shigeoka AO, Gatti RA, Derauf DC, Belmont JW, Conley ME. A single strand conformation polymorphism study of CD40 ligand. Efficient mutation analysis and carrier detection for X-linked hyper IgM syndrome. J Clin Invest. 1996 Jan 1;97(1):196-201. PMID:8550833 doi:http://dx.doi.org/10.1172/JCI118389
  9. Nonoyama S, Shimadzu M, Toru H, Seyama K, Nunoi H, Neubauer M, Yata J, Och HD. Mutations of the CD40 ligand gene in 13 Japanese patients with X-linked hyper-IgM syndrome. Hum Genet. 1997 May;99(5):624-7. PMID:9150729
  10. Seyama K, Nonoyama S, Gangsaas I, Hollenbaugh D, Pabst HF, Aruffo A, Ochs HD. Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood. 1998 Oct 1;92(7):2421-34. PMID:9746782
  11. Furman MI, Krueger LA, Linden MD, Barnard MR, Frelinger AL 3rd, Michelson AD. Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol. 2004 Jun 16;43(12):2319-25. PMID:15193700 doi:10.1016/j.jacc.2003.12.055
  12. Furman MI, Krueger LA, Linden MD, Barnard MR, Frelinger AL 3rd, Michelson AD. Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol. 2004 Jun 16;43(12):2319-25. PMID:15193700 doi:10.1016/j.jacc.2003.12.055
  13. Henderson JN, Simmons CR, Mills JH. Structural Basis for Blocked Excited State Proton Transfer in a Fluorescent, Photoacidic Non-Canonical Amino Acid-Containing Antibody Fragment. J Mol Biol. 2022 Apr 30;434(8):167455. PMID:35033559 doi:10.1016/j.jmb.2022.167455

Contents


PDB ID 7sgm

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools