7skg
From Proteopedia
Myocilin OLF mutant V329M
Structural highlights
DiseaseMYOC_HUMAN Congenital glaucoma;Juvenile glaucoma. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting distinct genetic loci, including the gene represented in this entry. MYOC mutations may contribute to GLC3A via digenic inheritance with CYP1B1 and/or another locus associated with the disease (PubMed:15733270).[1] FunctionMYOC_HUMAN Secreted glycoprotein regulating the activation of different signaling pathways in adjacent cells to control different processes including cell adhesion, cell-matrix adhesion, cytoskeleton organization and cell migration. Promotes substrate adhesion, spreading and formation of focal contacts. Negatively regulates cell-matrix adhesion and stress fiber assembly through Rho protein signal transduction. Modulates the organization of actin cytoskeleton by stimulating the formation of stress fibers through interactions with components of Wnt signaling pathways. Promotes cell migration through activation of PTK2 and the downstream phosphatidylinositol 3-kinase signaling. Plays a role in bone formation and promotes osteoblast differentiation in a dose-dependent manner through mitogen-activated protein kinase signaling. Mediates myelination in the peripheral nervous system through ERBB2/ERBB3 signaling. Plays a role as a regulator of muscle hypertrophy through the components of dystrophin-associated protein complex. Involved in positive regulation of mitochondrial depolarization. Plays a role in neurite outgrowth. May participate in the obstruction of fluid outflow in the trabecular meshwork.[2] [3] [4] [5] [6] [7] [8] [9] Publication Abstract from PubMedAccurate predictions of the pathogenicity of mutations associated with genetic diseases are key to the success of precision medicine. Inherited missense mutations in the myocilin (MYOC) gene, within its olfactomedin (OLF) domain, constitute the strongest genetic link to primary open-angle glaucoma via a toxic gain of function, and thus MYOC is an attractive precision-medicine target. However, not all mutations in MYOC cause glaucoma, and common variants are expected to be neutral polymorphisms. The Genome Aggregation Database (gnomAD) lists approximately 100 missense variants documented within OLF, all of which are relatively rare (allele frequency <0.001%) and nearly all are of unknown pathogenicity. To distinguish disease-causing OLF variants from benign OLF variants, we first characterized the most prevalent population-based variants using a suite of cellular and biophysical assays, and identified two variants with features of aggregation-prone familial disease variants. Next, we considered all available biochemical and clinical data to demonstrate that pathogenic and benign variants can be differentiated statistically based on a single metric: the thermal stability of OLF. Our results motivate genotyping MYOC in patients for clinical monitoring of this widespread, painless and irreversible ocular disease. Quantitative differentiation of benign and misfolded glaucoma-causing myocilin variants on the basis of protein thermal stability.,Scelsi HF, Hill KR, Barlow BM, Martin MD, Lieberman RL Dis Model Mech. 2023 Jan 1;16(1):dmm049816. doi: 10.1242/dmm.049816. Epub 2023 , Jan 13. PMID:36579626[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|