The complex of phosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) with ATP/Mg and Tezacaftor (VX-661)
Structural highlights
7sv7 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
CFTR_HUMAN Defects in CFTR are the cause of cystic fibrosis (CF) [MIM:219700; also known as mucoviscidosis. CF is the most common genetic disease in the Caucasian population, with a prevalence of about 1 in 2'000 live births. Inheritance is autosomal recessive. CF is a common generalized disorder of exocrine gland function which impairs clearance of secretions in a variety of organs. It is characterized by the triad of chronic bronchopulmonary disease (with recurrent respiratory infections), pancreatic insufficiency (which leads to malabsorption and growth retardation) and elevated sweat electrolytes.[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46] Defects in CFTR are the cause of congenital bilateral absence of the vas deferens (CBAVD) [MIM:277180. CBAVD is an important cause of sterility in men and could represent an incomplete form of cystic fibrosis, as the majority of men suffering from cystic fibrosis lack the vas deferens.[47][48][49][50] [:]
Function
CFTR_HUMAN Involved in the transport of chloride ions. May regulate bicarbonate secretion and salvage in epithelial cells by regulating the SLC4A7 transporter. Can inhibit the chloride channel activity of ANO1.[51]
Publication Abstract from PubMed
Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the DeltaF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered DeltaF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.
Mechanism of CFTR correction by type I folding correctors.,Fiedorczuk K, Chen J Cell. 2022 Jan 6;185(1):158-168.e11. doi: 10.1016/j.cell.2021.12.009. PMID:34995514[52]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Cutting GR, Kasch LM, Rosenstein BJ, Zielenski J, Tsui LC, Antonarakis SE, Kazazian HH Jr. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature. 1990 Jul 26;346(6282):366-9. PMID:1695717 doi:http://dx.doi.org/10.1038/346366a0
↑ Kerem BS, Zielenski J, Markiewicz D, Bozon D, Gazit E, Yahav J, Kennedy D, Riordan JR, Collins FS, Rommens JM, et al.. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8447-51. PMID:2236053
↑ White MB, Krueger LJ, Holsclaw DS Jr, Gerrard BC, Stewart C, Quittell L, Dolganov G, Baranov V, Ivaschenko T, Kapronov NI, et al.. Detection of three rare frameshift mutations in the cystic fibrosis gene in an African-American (CF444delA), an Italian (CF2522insC), and a Soviet (CF3821delT). Genomics. 1991 May;10(1):266-9. PMID:1710600
↑ Jones CT, McIntosh I, Keston M, Ferguson A, Brock DJ. Three novel mutations in the cystic fibrosis gene detected by chemical cleavage: analysis of variant splicing and a nonsense mutation. Hum Mol Genet. 1992 Apr;1(1):11-7. PMID:1284466
↑ Cheadle JP, Meredith AL, al-Jader LN. A new missense mutation (R1283M) in exon 20 of the cystic fibrosis transmembrane conductance regulator gene. Hum Mol Genet. 1992 May;1(2):123-5. PMID:1284468
↑ Lissens W, Bonduelle M, Malfroot A, Dab I, Liebaers I. A serine to proline substitution (S1255P) in the second nucleotide binding fold of the cystic fibrosis gene. Hum Mol Genet. 1992 Sep;1(6):441-2. PMID:1284530
↑ Shackleton S, Beards F, Harris A. Detection of novel and rare mutations in exon 4 of the cystic fibrosis gene by SSCP. Hum Mol Genet. 1992 Sep;1(6):439-40. PMID:1284529
↑ Zielenski J, Fujiwara TM, Markiewicz D, Paradis AJ, Anacleto AI, Richards B, Schwartz RH, Klinger KW, Tsui LC, Morgan K. Identification of the M1101K mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and complete detection of cystic fibrosis mutations in the Hutterite population. Am J Hum Genet. 1993 Mar;52(3):609-15. PMID:7680525
↑ Mercier B, Lissens W, Novelli G, Kalaydjieva L, De Arce M, Kapranov N, Klain NC, Lenoir G, Chauveau P, Lenaerts C, et al.. Identification of eight novel mutations in a collaborative analysis of a part of the second transmembrane domain of the CFTR gene. Genomics. 1993 Apr;16(1):296-7. PMID:7683628
↑ Nunes V, Chillon M, Dork T, Tummler B, Casals T, Estivill X. A new missense mutation (E92K) in the first transmembrane domain of the CFTR gene causes a benign cystic fibrosis phenotype. Hum Mol Genet. 1993 Jan;2(1):79-80. PMID:7683954
↑ Chillon M, Casals T, Nunes V, Gimenez J, Perez Ruiz E, Estivill X. Identification of a new missense mutation (P205S) in the first transmembrane domain of the CFTR gene associated with a mild cystic fibrosis phenotype. Hum Mol Genet. 1993 Oct;2(10):1741-2. PMID:7505694
↑ Gasparini P, Marigo C, Bisceglia G, Nicolis E, Zelante L, Bombieri C, Borgo G, Pignatti PF, Cabrini G. Screening of 62 mutations in a cohort of cystic fibrosis patients from north eastern Italy: their incidence and clinical features of defined genotypes. Hum Mutat. 1993;2(5):389-94. PMID:7504969 doi:http://dx.doi.org/10.1002/humu.1380020511
↑ Ghanem N, Costes B, Girodon E, Martin J, Fanen P, Goossens M. Identification of eight mutations and three sequence variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1994 May 15;21(2):434-6. PMID:7522211 doi:http://dx.doi.org/S0888-7543(84)71290-0
↑ Boteva K, Papageorgiou E, Georgiou C, Angastiniotis M, Middleton LT, Constantinou-Deltas CD. Novel cystic fibrosis mutation associated with mild disease in Cypriot patients. Hum Genet. 1994 May;93(5):529-32. PMID:7513296
↑ Dork T, Mekus F, Schmidt K, Bosshammer J, Fislage R, Heuer T, Dziadek V, Neumann T, Kalin N, Wulbrand U, et al.. Detection of more than 50 different CFTR mutations in a large group of German cystic fibrosis patients. Hum Genet. 1994 Nov;94(5):533-42. PMID:7525450
↑ Greil I, Wagner K, Rosenkranz W. A new missense mutation G1249E in exon 20 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Hum Hered. 1994 Jul-Aug;44(4):238-40. PMID:7520022
↑ Petreska L, Koceva S, Gordova-Muratovska A, Nestorov R, Efremov GD. Identification of two new mutations (711 +3A-->G and V1397E) in CF chromosomes of Albanian and Macedonian origin. Hum Mol Genet. 1994 Jun;3(6):999-1000. PMID:7524913
↑ Schaedel C, Kristoffersson AC, Kornfalt R, Holmberg L. A novel cystic fibrosis mutation, Y109C, in the first transmembrane domain of CFTR. Hum Mol Genet. 1994 Jun;3(6):1001-2. PMID:7524909
↑ Chillon M, Casals T, Gimenez J, Nunes V, Estivill X. Analysis of the CFTR gene in the Spanish population: SSCP-screening for 60 known mutations and identification of four new mutations (Q30X, A120T, 1812-1 G-->A, and 3667del4). Hum Mutat. 1994;3(3):223-30. PMID:7517264 doi:http://dx.doi.org/10.1002/humu.1380030308
↑ Bienvenu T, Petitpretz P, Beldjord C, Kaplan JC. A missense mutation (F87L) in exon 3 of the cystic fibrosis transmembrane conductance regulator gene. Hum Mutat. 1994;3(4):395-6. PMID:8081395 doi:http://dx.doi.org/10.1002/humu.1380030412
↑ Brancolini V, Cremonesi L, Belloni E, Pappalardo E, Bordoni R, Seia M, Russo S, Padoan R, Giunta A, Ferrari M. Search for mutations in pancreatic sufficient cystic fibrosis Italian patients: detection of 90% of molecular defects and identification of three novel mutations. Hum Genet. 1995 Sep;96(3):312-8. PMID:7544319
↑ Desgeorges M, Rodier M, Piot M, Demaille J, Claustres M. Four adult patients with the missense mutation L206W and a mild cystic fibrosis phenotype. Hum Genet. 1995 Dec;96(6):717-20. PMID:8522333
↑ Zielenski J, Markiewicz D, Chen HS, Schappert K, Seller A, Durie P, Corey M, Tsui LC. Identification of six mutations (R31L, 441delA, 681delC, 1461ins4, W1089R, E1104X) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Hum Mutat. 1995;5(1):43-7. PMID:7537150 doi:http://dx.doi.org/10.1002/humu.1380050106
↑ Verlingue C, Kapranov NI, Mercier B, Ginter EK, Petrova NV, Audrezet MP, Ferec C. Complete screening of mutations in the coding sequence of the CFTR gene in a sample of CF patients from Russia: identification of three novel alleles. Hum Mutat. 1995;5(3):205-9. PMID:7541273 doi:http://dx.doi.org/10.1002/humu.1380050304
↑ Romey MC, Desgeorges M, Ray P, Godard P, Demaille J, Claustres M. Novel missense mutation in the first transmembrane segment of the CFTR gene (Q98R) identified in a male adult. Hum Mutat. 1995;6(2):190-1. PMID:7581407 doi:http://dx.doi.org/10.1002/humu.1380060216
↑ Leoni GB, Pitzalis S, Podda R, Zanda M, Silvetti M, Caocci L, Cao A, Rosatelli MC. A specific cystic fibrosis mutation (T3381) associated with the phenotype of isolated hypotonic dehydration. J Pediatr. 1995 Aug;127(2):281-3. PMID:7543567
↑ Ferec C, Novelli G, Verlingue C, Quere I, Dallapiccola B, Audrezet MP, Mercier B. Identification of six novel CFTR mutations in a sample of Italian cystic fibrosis patients. Mol Cell Probes. 1995 Apr;9(2):135-7. PMID:7541510
↑ Messaoud T, Verlingue C, Denamur E, Pascaud O, Quere I, Fattoum S, Elion J, Ferec C. Distribution of CFTR mutations in cystic fibrosis patients of Tunisian origin: identification of two novel mutations. Eur J Hum Genet. 1996;4(1):20-4. PMID:8800923
↑ Petreska L, Plaseska D, Koceva S, Stavljenic-Rukavina A, Efremov GD. A novel mutation in exon 12 (Y569C) of the CFTR gene identified in a patient of Croatian origin. Hum Mutat. 1996;7(4):374-5. PMID:8723693 doi:10.1002/humu.1380070402
↑ Onay T, Topaloglu O, Zielenski J, Gokgoz N, Kayserili H, Camcioglu Y, Cokugras H, Akcakaya N, Apak M, Tsui LC, Kirdar B. Analysis of the CFTR gene in Turkish cystic fibrosis patients: identification of three novel mutations (3172delAC, P1013L and M1028I). Hum Genet. 1998 Feb;102(2):224-30. PMID:9521595
↑ Bombieri C, Benetazzo M, Saccomani A, Belpinati F, Gile LS, Luisetti M, Pignatti PF. Complete mutational screening of the CFTR gene in 120 patients with pulmonary disease. Hum Genet. 1998 Dec;103(6):718-22. PMID:9921909
↑ Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B, Cuppens H. Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator. Hum Mol Genet. 1998 Oct;7(11):1761-9. PMID:9736778
↑ Leoni GB, Pitzalis S, Tonelli R, Cao A. Identification of a novel mutation (S13F) in the CFTR gene in a CF patient of Sardinian origin. Hum Mutat. 1998;11(4):337. PMID:9554753
↑ Feldmann D, Sardet A, Cougoureux E, Plouvier E, Fontaine JL, Tournier G, Aymard P. Identification of three novel mutations in the CFTR gene, R117P, deltaD192, and 3121-1G-->A in four French patients. Hum Mutat. 1998;Suppl 1:S78-80. PMID:9452048
↑ Casals T, Ramos MD, Gimenez J, Nadal M, Nunes V, Estivill X. Paternal origin of a de novo novel CFTR mutation (L1065R) causing cystic fibrosis. Hum Mutat. 1998;Suppl 1:S99-102. PMID:9452054
↑ Shackleton S, Harris A. A 2-amino acid insertion mutation (1243insACAAAA) in exon 7 of the CFTR gene. Hum Mutat. 1998;Suppl 1:S156-7. PMID:9452073
↑ Mercier B, Verlingue C, Lissens W, Silber SJ, Novelli G, Bonduelle M, Audrezet MP, Ferec C. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients. Am J Hum Genet. 1995 Jan;56(1):272-7. PMID:7529962
↑ Jezequel P, Dorval I, Fergelot P, Chauvel B, Le Treut A, Le Gall JY, Le Lannou D, Blayau M. Structural analysis of CFTR gene in congenital bilateral absence of vas deferens. Clin Chem. 1995 Jun;41(6 Pt 1):833-5. PMID:7539342
↑ Bienvenu T, Bousquet S, Vidaud D, Hubert D, Francoual C, Beldjord C, Kaplan JC. A novel missense mutation D513G in exon 10 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene identified in a French CBAVD patient. Mutations in brief no. 175. Online. Hum Mutat. 1998;12(3):213-4. PMID:10651488
↑ Ousingsawat J, Kongsuphol P, Schreiber R, Kunzelmann K. CFTR and TMEM16A are separate but functionally related Cl- channels. Cell Physiol Biochem. 2011;28(4):715-24. doi: 10.1159/000335765. Epub 2011 Dec, 14. PMID:22178883 doi:10.1159/000335765
↑ Fiedorczuk K, Chen J. Mechanism of CFTR correction by type I folding correctors. Cell. 2022 Jan 6;185(1):158-168.e11. doi: 10.1016/j.cell.2021.12.009. PMID:34995514 doi:http://dx.doi.org/10.1016/j.cell.2021.12.009