7t8w

From Proteopedia

Jump to: navigation, search

Structure of antibody 3G12 bound to Respiratory Syncytial Virus G central conserved domain mutant S177Q

Structural highlights

7t8w is a 3 chain structure with sequence from Homo sapiens and Human respiratory syncytial virus A2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.1Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GLYC_HRSVA Attaches the virion to the host cell membrane by interacting with heparan sulfate, initiating the infection. Interacts with host CX3CR1, the receptor for the CX3C chemokine fractalkine, to modulate the immune response and facilitate infection. Unlike the other paramyxovirus attachment proteins, lacks both neuraminidase and hemagglutinating activities. Secreted glycoprotein G helps RSV escape antibody-dependent restriction of replication by acting as an antigen decoy and by modulating the activity of leukocytes bearing Fcgamma receptors.

Publication Abstract from PubMed

Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease of children, the elderly, and immunocompromised individuals. Currently, there are no FDA-approved RSV vaccines. The RSV G glycoprotein is used for viral attachment to host cells and impairment of host immunity by interacting with the human chemokine receptor CX3CR1. Antibodies that disrupt this interaction are protective against infection and disease. Nevertheless, development of an RSV G vaccine antigen has been hindered by its low immunogenicity and safety concerns. A previous study described three engineered RSV G proteins containing single-point mutations that induce higher levels of IgG antibodies and have improved safety profiles compared to wild-type RSV G (H. C. Bergeron, J. Murray, A. M. Nunez Castrejon, et al., Viruses 13:352, 2021, https://doi.org/10.3390/v13020352). However, it is unclear if the mutations affect RSV G protein folding and display of its conformational epitopes. In this study, we show that the RSV G S177Q protein retains high-affinity binding to protective human and mouse monoclonal antibodies and has equal reactivity as wild-type RSV G protein to human reference immunoglobulin to RSV. Additionally, we determined the high-resolution crystal structure of RSV G S177Q protein in complex with the anti-RSV G antibody 3G12, further validating its antigenic structure. These studies show for the first time that an engineered RSV G protein with increased immunogenicity and safety retains conformational epitopes to high-affinity protective antibodies, supporting its further development as an RSV vaccine immunogen. IMPORTANCE Respiratory syncytial virus (RSV) causes severe lower respiratory diseases of children, the elderly, and immunocompromised populations. There currently are no FDA-approved RSV vaccines. Most vaccine development efforts have focused on the RSV F protein, and the field has generally overlooked the receptor-binding antigen RSV G due to its poor immunogenicity and safety concerns. However, single-point mutant RSV G proteins have been previously identified that have increased immunogenicity and safety. In this study, we investigate the antibody reactivities of three known RSV G mutant proteins. We show that one mutant RSV G protein retains high-affinity binding to protective monoclonal antibodies, is equally recognized by anti-RSV antibodies in human sera, and forms the same three-dimensional structure as the wild-type RSV G protein. Our study validates the structure-guided design of the RSV G protein as an RSV vaccine antigen.

Structure-Based Design and Antigenic Validation of Respiratory Syncytial Virus G Immunogens.,Nunez Castrejon AM, O'Rourke SM, Kauvar LM, DuBois RM J Virol. 2022 Apr 13;96(7):e0220121. doi: 10.1128/jvi.02201-21. Epub 2022 Mar 10. PMID:35266806[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Nuñez Castrejon AM, O'Rourke SM, Kauvar LM, DuBois RM. Structure-Based Design and Antigenic Validation of Respiratory Syncytial Virus G Immunogens. J Virol. 2022 Apr 13;96(7):e0220121. PMID:35266806 doi:10.1128/jvi.02201-21

Contents


PDB ID 7t8w

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools