Structural highlights
Publication Abstract from PubMed
The DNA tensegrity triangle is known to reliably self-assemble into a 3D rhombohedral crystalline lattice via sticky-end cohesion. Here, we expand the library of accessible motifs through (1) covalent extensions of inter-triangle regions and (2) sticky-end coordinated linkages of adjacent triangles with double helical segments using both geometrically symmetric and asymmetric configurations. We report the molecular structures of eighteen self-assembled architectures at resolutions of 3.32-9.32 A; the observed cell dimensions, cavity sizes, and cross-sectional areas agree with theoretical expectations. These data demonstrate that fine control over triclinic and rhombohedral crystal parameters and the customizability of more complex 3D DNA lattices are attainable via rational design. We anticipate that augmented DNA architectures may be fine-tuned for the self-assembly of designer nano-cages, guest-host complexes, and proscriptive 3D nanomaterials, as originally envisioned. Finally, designer asymmetric crystalline building blocks can be seen as a first step toward controlling and encoding information in three dimensions. This article is protected by copyright. All rights reserved.
Augmented DNA Nano-Architectures: A Structural Library of 3D Self-Assembling Tensegrity Triangle Variants.,Woloszyn K, Vecchioni S, Ohayon YP, Lu B, Ma Y, Huang Q, Zhu E, Chernovolenko D, Markus T, Jonoska N, Mao C, Seeman NC, Sha R Adv Mater. 2022 Sep 13:e2206876. doi: 10.1002/adma.202206876. PMID:36100349[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Woloszyn K, Vecchioni S, Ohayon YP, Lu B, Ma Y, Huang Q, Zhu E, Chernovolenko D, Markus T, Jonoska N, Mao C, Seeman NC, Sha R. Augmented DNA Nano-Architectures: A Structural Library of 3D Self-Assembling Tensegrity Triangle Variants. Adv Mater. 2022 Sep 13:e2206876. doi: 10.1002/adma.202206876. PMID:36100349 doi:http://dx.doi.org/10.1002/adma.202206876