7u72
From Proteopedia
Human DNA polymerase eta-DNA ternary mismatch complex:ground state at pH7.0 (K+ MES) with 1 Ca2+ ion
Structural highlights
DiseasePOLH_HUMAN Defects in POLH are the cause of xeroderma pigmentosum variant type (XPV) [MIM:278750; also designated as XP-V. Xeroderma pigmentosum (XP) is an autosomal recessive disease due to deficient nucleotide excision repair. It is characterized by hypersensitivity of the skin to sunlight, followed by high incidence of skin cancer and frequent neurologic abnormalities. XPV shows normal nucleotide excision repair, but an exaggerated delay in recovery of replicative DNA synthesis. Most XPV patients do not develop clinical symptoms and skin neoplasias until a later age. Clinical manifestations are limited to photo-induced deterioration of the skin and eyes.[1] [2] [3] [4] [5] FunctionPOLH_HUMAN DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Plays an important role in the repair of UV-induced pyrimidine dimers. Depending on the context, it inserts the correct base, but causes frequent base transitions and transversions. May play a role in hypermutation at immunoglobulin genes. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but does not have lyase activity. Targets POLI to replication foci.[6] [7] [8] [9] [10] Publication Abstract from PubMedError-free replication of DNA is essential for life. Despite the proofreading capability of several polymerases, intrinsic polymerase fidelity is in general much higher than what base-pairing energies can provide. Although researchers have investigated this long-standing question with kinetics, structural determination, and computational simulations, the structural factors that dictate polymerase fidelity are not fully resolved. Time-resolved crystallography has elucidated correct nucleotide incorporation and established a three-metal-ion-dependent catalytic mechanism for polymerases. Using X-ray time-resolved crystallography, we visualize the complete DNA misincorporation process catalyzed by DNA polymerase eta. The resulting molecular snapshots suggest primer 3 -OH alignment mediated by A-site metal ion binding is the key step in substrate discrimination. Moreover, we observe that C-site metal ion binding preceded the nucleotidyl transfer reaction and demonstrate that the C-site metal ion is strictly required for misincorporation. Our results highlight the essential but separate roles of the three metal ions in DNA synthesis. In crystallo observation of three metal ion promoted DNA polymerase misincorporation.,Chang C, Lee Luo C, Gao Y Nat Commun. 2022 Apr 29;13(1):2346. doi: 10.1038/s41467-022-30005-3. PMID:35487947[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|