7uby
From Proteopedia
Structure of the GTD domain of Clostridium difficile toxin A in complex with VHH AH3
Structural highlights
FunctionTCDA_CLODI Precursor of a cytotoxin that targets and disrupts the colonic epithelium, inducing the host inflammatory and innate immune responses and resulting in diarrhea and pseudomembranous colitis (PubMed:20844489). TcdA and TcdB constitute the main toxins that mediate the pathology of C.difficile infection, an opportunistic pathogen that colonizes the colon when the normal gut microbiome is disrupted (PubMed:19252482, PubMed:20844489). Compared to TcdB, TcdA is less virulent and less important for inducing the host inflammatory and innate immune responses (PubMed:19252482). This form constitutes the precursor of the toxin: it enters into host cells and mediates autoprocessing to release the active toxin (Glucosyltransferase TcdA) into the host cytosol (By similarity). Targets colonic epithelia by binding to some receptor, and enters host cells via clathrin-mediated endocytosis (By similarity). Binding to LDLR, as well as carbohydrates and sulfated glycosaminoglycans on host cell surface contribute to entry into cells (PubMed:1670930, PubMed:31160825, PubMed:16622409). In contrast to TcdB, Frizzled receptors FZD1, FZD2 and FZD7 do not act as host receptors in the colonic epithelium for TcdA (PubMed:27680706). Once entered into host cells, acidification in the endosome promotes the membrane insertion of the translocation region and formation of a pore, leading to translocation of the GT44 and peptidase C80 domains across the endosomal membrane (By similarity). This activates the peptidase C80 domain and autocatalytic processing, releasing the N-terminal part (Glucosyltransferase TcdA), which constitutes the active part of the toxin, in the cytosol (PubMed:17334356, PubMed:19553670, PubMed:27571750).[UniProtKB:P18177][1] [2] [3] [4] [5] [6] [7] [8] [9] Active form of the toxin, which is released into the host cytosol following autoprocessing and inactivates small GTPases (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Acts by mediating monoglucosylation of small GTPases of the Rho family (Rac1, RhoA, RhoB, RhoC, Rap2A and Cdc42) in host cells at the conserved threonine residue located in the switch I region ('Thr-37/35'), using UDP-alpha-D-glucose as the sugar donor (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Monoglucosylation of host small GTPases completely prevents the recognition of the downstream effector, blocking the GTPases in their inactive form, leading to actin cytoskeleton disruption and cell death, resulting in the loss of colonic epithelial barrier function (PubMed:7775453). Also able to catalyze monoglucosylation of some members of the Ras family (H-Ras/HRAS, K-Ras/KRAS and N-Ras/NRAS), but with much less efficiency than with Rho proteins, suggesting that it does not act on Ras proteins in vivo (PubMed:30622517).[10] [11] [12] [13] [14] Publication Abstract from PubMedToxin A (TcdA) and toxin B (TcdB) are two key virulence factors secreted by Clostridioides difficile, which is listed as an urgent threat by the CDC. These two large homologous exotoxins are mainly responsible for diseases associated with C. difficile infection (CDI) with symptoms ranging from diarrhea to life threatening pseudomembranous colitis. Single-domain camelid antibodies (VHHs) AH3 and AA6 are two potent antitoxins against TcdA, which when combined with two TcdB-targeting VHHs showed effective protection against both primary and recurrent CDI in animal models. Here, we report the co-crystal structures of AH3 and AA6 when they form complexes with the glucosyltransferase domain (GTD) and a fragment of the delivery and receptor-binding domain (DRBD) of TcdA, respectively. Based on these structures, we find that AH3 binding enhances the overall stability of the GTD and interferes with its unfolding at acidic pH, and AA6 may inhibit the pH-dependent conformational changes in the DRBD that is necessary for pore formation of TcdA. These studies reveal two functionally critical epitopes on TcdA and shed new insights into neutralizing mechanisms and potential development of epitope-focused vaccines against TcdA. Neutralizing epitopes on Clostridioides difficile toxin A revealed by the structures of two camelid VHH antibodies.,Chen B, Perry K, Jin R Front Immunol. 2022 Nov 16;13:978858. doi: 10.3389/fimmu.2022.978858. eCollection , 2022. PMID:36466927[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|