7ul2

From Proteopedia

Jump to: navigation, search

CryoEM Structure of Inactive NTSR1 Bound to SR48692 and Nb6

Structural highlights

7ul2 is a 2 chain structure with sequence from Homo sapiens and Lama glama. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.4Å
Ligands:NA, Q6Q
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

OPRK_HUMAN G-protein coupled opioid receptor that functions as receptor for endogenous alpha-neoendorphins and dynorphins, but has low affinity for beta-endorphins. Also functions as receptor for various synthetic opioids and for the psychoactive diterpene salvinorin A. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling leads to the inhibition of adenylate cyclase activity. Inhibits neurotransmitter release by reducing calcium ion currents and increasing potassium ion conductance. Plays a role in the perception of pain. Plays a role in mediating reduced physical activity upon treatment with synthetic opioids. Plays a role in the regulation of salivation in response to synthetic opioids. May play a role in arousal and regulation of autonomic and neuroendocrine functions.[1] [2] [3] [4] NTR1_HUMAN Receptor for the tridecapeptide neurotensin. It is associated with G proteins that activate a phosphatidylinositol-calcium second messenger system.

Publication Abstract from PubMed

Cryogenic electron microscopy (cryo-EM) has widened the field of structure-based drug discovery by allowing for routine determination of membrane protein structures previously intractable. Despite representing one of the largest classes of therapeutic targets, most inactive-state G protein-coupled receptors (GPCRs) have remained inaccessible for cryo-EM because their small size and membrane-embedded nature impedes projection alignment for high-resolution map reconstructions. Here we demonstrate that the same single-chain camelid antibody (nanobody) recognizing a grafted intracellular loop can be used to obtain cryo-EM structures of inactive-state GPCRs at resolutions comparable or better than those obtained by X-ray crystallography. Using this approach, we obtained structures of neurotensin 1 receptor bound to antagonist SR48692, mu-opioid receptor bound to alvimopan, apo somatostatin receptor 2 and histamine receptor 2 bound to famotidine. We expect this rapid, straightforward approach to facilitate the broad exploration of GPCR inactive states without the need for extensive engineering and crystallization.

Structure determination of inactive-state GPCRs with a universal nanobody.,Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, Skiniotis G Nat Struct Mol Biol. 2022 Dec;29(12):1188-1195. doi: 10.1038/s41594-022-00859-8. , Epub 2022 Nov 17. PMID:36396979[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Li JG, Chen C, Liu-Chen LY. Ezrin-radixin-moesin-binding phosphoprotein-50/Na+/H+ exchanger regulatory factor (EBP50/NHERF) blocks U50,488H-induced down-regulation of the human kappa opioid receptor by enhancing its recycling rate. J Biol Chem. 2002 Jul 26;277(30):27545-52. Epub 2002 May 9. PMID:12004055 doi:http://dx.doi.org/10.1074/jbc.M200058200
  2. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC. Structure of the human kappa-opioid receptor in complex with JDTic. Nature. 2012 Mar 21;485(7398):327-32. doi: 10.1038/nature10939. PMID:22437504 doi:10.1038/nature10939
  3. Simonin F, Gaveriaux-Ruff C, Befort K, Matthes H, Lannes B, Micheletti G, Mattei MG, Charron G, Bloch B, Kieffer B. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7006-10. PMID:7624359
  4. Mansson E, Bare L, Yang D. Isolation of a human kappa opioid receptor cDNA from placenta. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1431-7. PMID:8060324
  5. Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, Skiniotis G. Structure determination of inactive-state GPCRs with a universal nanobody. Nat Struct Mol Biol. 2022 Dec;29(12):1188-1195. PMID:36396979 doi:10.1038/s41594-022-00859-8

Contents


PDB ID 7ul2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools