7w3h

From Proteopedia

Jump to: navigation, search

Structure of USP14-bound human 26S proteasome in substrate-engaged state ED2.1_USP14

Structural highlights

7w3h is a 13 chain structure with sequence from Homo sapiens and Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.2Å
Ligands:ADP, ATP, MG, ZN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PRS4_HUMAN The 26S protease is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex.

Publication Abstract from PubMed

Proteasomal degradation of ubiquitylated proteins is tightly regulated at multiple levels(1-3). A primary regulatory checkpoint is the removal of ubiquitin chains from substrates by the deubiquitylating enzyme ubiquitin-specific protease 14 (USP14), which reversibly binds the proteasome and confers the ability to edit and reject substrates. How USP14 is activated and regulates proteasome function remain unknown(4-7). Here we present high-resolution cryo-electron microscopy structures of human USP14 in complex with the 26S proteasome in 13 distinct conformational states captured during degradation of polyubiquitylated proteins. Time-resolved cryo-electron microscopy analysis of the conformational continuum revealed two parallel pathways of proteasome state transitions induced by USP14, and captured transient conversion of substrate-engaged intermediates into substrate-inhibited intermediates. On the substrate-engaged pathway, ubiquitin-dependent activation of USP14 allosterically reprograms the conformational landscape of the AAA-ATPase motor and stimulates opening of the core particle gate(8-10), enabling observation of a near-complete cycle of asymmetric ATP hydrolysis around the ATPase ring during processive substrate unfolding. Dynamic USP14-ATPase interactions decouple the ATPase activity from RPN11-catalysed deubiquitylation(11-13) and kinetically introduce three regulatory checkpoints on the proteasome, at the steps of ubiquitin recognition, substrate translocation initiation and ubiquitin chain recycling. These findings provide insights into the complete functional cycle of the USP14-regulated proteasome and establish mechanistic foundations for the discovery of USP14-targeted therapies.

USP14-regulated allostery of the human proteasome by time-resolved cryo-EM.,Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y Nature. 2022 May;605(7910):567-574. doi: 10.1038/s41586-022-04671-8. Epub 2022 , Apr 27. PMID:35477760[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
12 reviews cite this structure
Dewson et al. (2023)
No citations found

See Also

References

  1. Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y. USP14-regulated allostery of the human proteasome by time-resolved cryo-EM. Nature. 2022 May;605(7910):567-574. PMID:35477760 doi:10.1038/s41586-022-04671-8

Contents


PDB ID 7w3h

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools