7wz8
From Proteopedia
Structure of human langerin complex in Birbeck granules
Structural highlights
DiseaseCLC4K_HUMAN Defects in CD207 are the cause of Birbeck granule deficiency (BIRGD) [MIM:613393. It is a condition characterized by the absence of Birbeck granules in epidermal Langerhans cells. Despite the lack of Birbeck granules Langerhans cells are present in normal numbers and have normal morphologic characteristics and antigen-presenting capacity.[1] [2] FunctionCLC4K_HUMAN Calcium-dependent lectin displaying mannose-binding specificity. Induces the formation of Birbeck granules (BGs); is a potent regulator of membrane superimposition and zippering. Binds to sulfated as well as mannosylated glycans, keratan sulfate (KS) and beta-glucans. Facilitates uptake of antigens and is involved in the routing and/or processing of antigen for presentation to T cells. Major receptor on primary Langerhans cells for Candida species, Saccharomyces species, and Malassezia furfur. Protects against human immunodeficiency virus-1 (HIV-1) infection. Binds to high-mannose structures present on the envelope glycoprotein which is followed by subsequent targeting of the virus to the Birbeck granules leading to its rapid degradation.[3] [4] [5] [6] Publication Abstract from PubMedLangerhans cells are specialized antigen-presenting cells localized within the epidermis and mucosal epithelium. Upon contact with Langerhans cells, pathogens are captured by the C-type lectin langerin and internalized into a structurally unique vesicle known as a Birbeck granule. Although the immunological role of Langerhans cells and Birbeck granules have been extensively studied, the mechanism by which the characteristic zippered membrane structure of Birbeck granules is formed remains elusive. In this study, we observed isolated Birbeck granules using cryo-electron tomography and reconstructed the 3D structure of the repeating unit of the honeycomb lattice of langerin at 6.4 A resolution. We found that the interaction between the two langerin trimers was mediated by docking the flexible loop at residues 258-263 into the secondary carbohydrate-binding cleft. Mutations within the loop inhibited Birbeck granule formation and the internalization of HIV pseudovirus. These findings suggest a molecular mechanism for membrane zippering during Birbeck granule biogenesis and provide insight into the role of langerin in the defense against viral infection. Cryo-electron tomography of Birbeck granules reveals the molecular mechanism of langerin lattice formation.,Oda T, Yanagisawa H, Shinmori H, Ogawa Y, Kawamura T Elife. 2022 Jun 27;11:e79990. doi: 10.7554/eLife.79990. PMID:35758632[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|