7xfa
From Proteopedia
Structure of human Galectin-3 CRD in complex with monosaccharide inhibitor
Structural highlights
FunctionLEG3_HUMAN Galactose-specific lectin which binds IgE. May mediate with the alpha-3, beta-1 integrin the stimulation by CSPG4 of endothelial cells migration. Together with DMBT1, required for terminal differentiation of columnar epithelial cells during early embryogenesis (By similarity). In the nucleus: acts as a pre-mRNA splicing factor. Involved in acute inflammatory responses including neutrophil activation and adhesion, chemoattraction of monocytes macrophages, opsonization of apoptotic neutrophils, and activation of mast cells.[1] [2] [3] Publication Abstract from PubMedGalectin-3 (Gal-3), a member of the beta-galactoside-binding protein family, is implicated in a wide variety of human diseases. Identification of Gal-3 inhibitors with the right combination of potency (against both human and mouse Gal-3) and pharmacokinetic properties to fully evaluate the potential of Gal-3 for therapeutic intervention has been a major challenge due to the characteristics of its binding pocket: high hydrophilicity and key structural differences between human Gal-3 and the mouse ortholog. We report the discovery of a novel series of monosaccharide-based, highly potent, and orally bioavailable inhibitors of human and mouse Gal-3. The novel monosaccharide derivatives proved to be selective for Gal-3, the only member of the chimeric type of galectins, over Gal-1 and Gal-9, representative of the prototype and tandem-repeat type of galectins, respectively. The proposed binding mode for the newly identified ligands was confirmed by an X-ray cocrystal structure of a representative analogue bound to Gal-3 protein. Identification of Monosaccharide Derivatives as Potent, Selective, and Orally Bioavailable Inhibitors of Human and Mouse Galectin-3.,Liu C, Jalagam PR, Feng J, Wang W, Raja T, Sura MR, Manepalli RKVLP, Aliphedi BR, Medavarapu S, Nair SK, Muthalagu V, Natesan R, Gupta A, Beno B, Panda M, Ghosh K, Shukla JK, Sale H, Haldar P, Kalidindi N, Shah D, Patel D, Mathur A, Ellsworth BA, Cheng D, Regueiro-Ren A J Med Chem. 2022 Aug 25;65(16):11084-11099. doi: 10.1021/acs.jmedchem.2c00517. , Epub 2022 Aug 15. PMID:35969688[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|