7xgk
From Proteopedia
Human renin in complex with compound1
Structural highlights
Disease[RENI_HUMAN] Defects in REN are a cause of renal tubular dysgenesis (RTD) [MIM:267430]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).[1] Defects in REN are the cause of familial juvenile hyperuricemic nephropathy type 2 (HNFJ2) [MIM:613092]. It is a renal disease characterized by juvenile onset of hyperuricemia, slowly progressive renal failure and anemia.[2] Function[RENI_HUMAN] Renin is a highly specific endopeptidase, whose only known function is to generate angiotensin I from angiotensinogen in the plasma, initiating a cascade of reactions that produce an elevation of blood pressure and increased sodium retention by the kidney. Publication Abstract from PubMedThe renin-angiotensin-aldosterone system (RAAS) plays a key role in the regulation of blood pressure. Renin, the first and rate-limiting enzyme of the RAAS, is an attractive target for the treatment of hypertension and cardiovascular/renal diseases. Therefore, various direct renin inhibitors (DRIs) have been researched over recent decades; however, most exhibited poor pharmacokinetics and oral bioavailability due to the peptidomimetic or nonpeptidomimetic structures with a molecular weight (MW) of >600, and only aliskiren is approved. This study introduces a novel class of DRIs comprised of a 2-carbamoyl morpholine scaffold. These compounds have a nonpeptidomimetic structure and a MW of <500. The representative compound 26 was highly potent despite not occupying S1'-S2' sites or the opened flap region used by other DRIs and exerted a significant antihypertensive efficacy via oral administration on double transgenic mice carrying both the human angiotensinogen and the human renin genes. Discovery of Novel 2-Carbamoyl Morpholine Derivatives as Highly Potent and Orally Active Direct Renin Inhibitors.,Iijima D, Sugama H, Awai N, Takahashi Y, Togashi Y, Takebe T, Xie J, Shen J, Ke Y, Akatsuka H, Kawaguchi T, Takedomi K, Kashima A, Nishio M, Inui Y, Yoneda H, Xia G, Iijima T ACS Med Chem Lett. 2022 Aug 1;13(8):1351-1357. doi:, 10.1021/acsmedchemlett.2c00280. eCollection 2022 Aug 11. PMID:35978678[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|