7y7h

From Proteopedia

Jump to: navigation, search

Structure of the Bacterial Ribosome with human tRNA Tyr(GalQ34) and mRNA(UAC)

Structural highlights

7y7h is a 10 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.51Å
Ligands:1MA, 1MG, 2MA, 2MG, 3AU, 3TD, 4D4, 4OC, 4SU, 56B, 5MC, 5MU, 6MZ, D2T, G7M, GAL, H2U, IAS, M2G, MA6, MEQ, MG, MS6, OMC, OMG, OMU, PSU, UR3, UY1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RS19_ECOLI In the E.coli 70S ribosome in the initiation state (PubMed:12809609) it has been modeled to contact the 23S rRNA of the 50S subunit forming part of bridge B1a; this bridge is broken in the model with bound EF-G. The 23S rRNA contact site in bridge B1a is modeled to differ in different ribosomal states (PubMed:12859903), contacting alternately S13 or S19. In the 3.5 angstroms resolved ribosome structures (PubMed:16272117) the contacts between L5, S13 and S19 bridge B1b are different, confirming the dynamic nature of this interaction. Bridge B1a is not visible in the crystallized ribosomes due to 23S rRNA disorder.[HAMAP-Rule:MF_00531] Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. Contacts the A site tRNA.[HAMAP-Rule:MF_00531]

Publication Abstract from PubMed

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.

Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth.,Zhao X, Ma D, Ishiguro K, Saito H, Akichika S, Matsuzawa I, Mito M, Irie T, Ishibashi K, Wakabayashi K, Sakaguchi Y, Yokoyama T, Mishima Y, Shirouzu M, Iwasaki S, Suzuki T, Suzuki T Cell. 2023 Dec 7;186(25):5517-5535.e24. doi: 10.1016/j.cell.2023.10.026. Epub , 2023 Nov 21. PMID:37992713[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Zhao X, Ma D, Ishiguro K, Saito H, Akichika S, Matsuzawa I, Mito M, Irie T, Ishibashi K, Wakabayashi K, Sakaguchi Y, Yokoyama T, Mishima Y, Shirouzu M, Iwasaki S, Suzuki T, Suzuki T. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell. 2023 Nov 17:S0092-8674(23)01177-7. PMID:37992713 doi:10.1016/j.cell.2023.10.026

Contents


PDB ID 7y7h

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools