| Structural highlights
7z8f is a 33 chain structure with sequence from Homo sapiens, Mus musculus and Sus scrofa. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | Electron Microscopy, Resolution 20Å |
Ligands: | , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
ACTZ_PIG Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor(1-3). Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour(4-6). Different coiled-coil adaptors are linked to different cargos(7,8), and some share motifs known to contact sites on dynein and dynactin(4,9-13). There is limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here we develop a cryo-electron microscopy processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We found that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos.
Structure of dynein-dynactin on microtubules shows tandem adaptor binding.,Chaaban S, Carter AP Nature. 2022 Oct;610(7930):212-216. doi: 10.1038/s41586-022-05186-y. Epub 2022 , Sep 7. PMID:36071160[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA, Yu M, Patel NA, Robinson CV, Carter AP. The structure of the dynactin complex and its interaction with dynein. Science. 2015 Mar 27;347(6229):1441-6. doi: 10.1126/science.aaa4080. Epub 2015, Feb 12. PMID:25814576 doi:http://dx.doi.org/10.1126/science.aaa4080
- ↑ Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP. Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated. Cell. 2017 Jun 15;169(7):1303-1314.e18. doi: 10.1016/j.cell.2017.05.025. Epub, 2017 Jun 8. PMID:28602352 doi:http://dx.doi.org/10.1016/j.cell.2017.05.025
- ↑ Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, Yildiz A, Carter AP. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature. 2018 Feb 7;554(7691):202-206. doi: 10.1038/nature25462. PMID:29420470 doi:http://dx.doi.org/10.1038/nature25462
- ↑ Lau CK, O'Reilly FJ, Santhanam B, Lacey SE, Rappsilber J, Carter AP. Cryo-EM reveals the complex architecture of dynactin's shoulder region and pointed end. EMBO J. 2021 Apr 15;40(8):e106164. PMID:33734450 doi:10.15252/embj.2020106164
- ↑ Chaaban S, Carter AP. Structure of dynein-dynactin on microtubules shows tandem adaptor binding. Nature. 2022 Sep 7. pii: 10.1038/s41586-022-05186-y. doi:, 10.1038/s41586-022-05186-y. PMID:36071160 doi:http://dx.doi.org/10.1038/s41586-022-05186-y
- ↑ Chaaban S, Carter AP. Structure of dynein-dynactin on microtubules shows tandem adaptor binding. Nature. 2022 Sep 7. pii: 10.1038/s41586-022-05186-y. doi:, 10.1038/s41586-022-05186-y. PMID:36071160 doi:http://dx.doi.org/10.1038/s41586-022-05186-y
|