7zq6

From Proteopedia

Jump to: navigation, search

70S E. coli ribosome with truncated uL23 and uL24 loops and a stalled filamin domain 5 nascent chain

Structural highlights

7zq6 is a 10 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.75Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Co-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by the shape and surface of the narrow tunnel, we have rationally engineered three exit tunnel protein loops (uL22, uL23 and uL24) of the 70S ribosome by CRISPR/Cas9 gene editing, and studied the co-translational folding of an immunoglobulin-like filamin domain (FLN5). Our thermodynamics measurements employing (19)F/(15)N/methyl-TROSY NMR spectroscopy together with cryo-EM and molecular dynamics simulations reveal how the variations in the lengths of the loops present across species exert their distinct effects on the free energy of FLN5 folding. A concerted interplay of the uL23 and uL24 loops is sufficient to alter co-translational folding energetics, which we highlight by the opposite folding outcomes resulting from their extensions. These subtle modulations occur through a combination of the steric effects relating to the shape of the tunnel, the dynamic interactions between the ribosome surface and the unfolded nascent chain, and its altered exit pathway within the vestibule. These results illustrate the role of the exit tunnel structure in co-translational folding, and provide principles for how to remodel it to elicit a desired folding outcome.

Modulating co-translational protein folding by rational design and ribosome engineering.,Ahn M, Wlodarski T, Mitropoulou A, Chan SHS, Sidhu H, Plessa E, Becker TA, Budisa N, Waudby CA, Beckmann R, Cassaignau AME, Cabrita LD, Christodoulou J Nat Commun. 2022 Jul 22;13(1):4243. doi: 10.1038/s41467-022-31906-z. PMID:35869078[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Ahn M, Włodarski T, Mitropoulou A, Chan SHS, Sidhu H, Plessa E, Becker TA, Budisa N, Waudby CA, Beckmann R, Cassaignau AME, Cabrita LD, Christodoulou J. Modulating co-translational protein folding by rational design and ribosome engineering. Nat Commun. 2022 Jul 22;13(1):4243. PMID:35869078 doi:10.1038/s41467-022-31906-z

Contents


PDB ID 7zq6

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools