Structural highlights
7zxy is a 16 chain structure with sequence from Synechocystis sp. PCC 6803. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
Method: | Electron Microscopy, Resolution 3.15Å |
Ligands: | , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
PETM_SYNY3 Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions.[HAMAP-Rule:MF_00396]
Publication Abstract from PubMed
In oxygenic photosynthesis, the cytochrome b6f (cytb6f) complex links the linear electron transfer (LET) reactions occurring at photosystems I and II and generates a transmembrane proton gradient via the Q-cycle. In addition to this central role in LET, cytb6f also participates in a range of processes including cyclic electron transfer (CET), state transitions and photosynthetic control. Many of the regulatory roles of cytb6f are facilitated by auxiliary proteins that differ depending upon the species, yet because of their weak and transient nature the structural details of these interactions remain unknown. An apparent key player in the regulatory balance between LET and CET in cyanobacteria is PetP, a approximately 10 kDa protein that is also found in red algae but not in green algae and plants. Here, we used cryogenic electron microscopy to determine the structure of the Synechocystis sp. PCC 6803 cytb6f complex in the presence and absence of PetP. Our structures show that PetP interacts with the cytoplasmic side of cytb6f, displacing the C-terminus of the PetG subunit and shielding the C-terminus of cytochrome b6, which binds the heme cn cofactor that is suggested to mediate CET. The structures also highlight key differences in the mode of plastoquinone binding between cyanobacterial and plant cytb6f complexes, which we suggest may reflect the unique combination of photosynthetic and respiratory electron transfer in cyanobacterial thylakoid membranes. The structure of cytb6f from a model cyanobacterial species amenable to genetic engineering will enhance future site-directed mutagenesis studies of structure-function relationships in this crucial ET complex.
Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory PetP subunit.,Proctor MS, Malone LA, Farmer DA, Swainsbury DJK, Hawkings FR, Pastorelli F, Emrich-Mills TZ, Siebert CA, Hunter CN, Johnson MP, Hitchcock A Biochem J. 2022 Jul 15;479(13):1487-1503. doi: 10.1042/BCJ20220124. PMID:35726684[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Proctor MS, Malone LA, Farmer DA, Swainsbury DJK, Hawkings FR, Pastorelli F, Emrich-Mills TZ, Siebert CA, Hunter CN, Johnson MP, Hitchcock A. Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory PetP subunit. Biochem J. 2022 Jul 15;479(13):1487-1503. doi: 10.1042/BCJ20220124. PMID:35726684 doi:http://dx.doi.org/10.1042/BCJ20220124