8b6l

From Proteopedia

Jump to: navigation, search

Subtomogram average of the human Sec61-TRAP-OSTA-translocon

Structural highlights

8b6l is a 10 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 7.6Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

SC61B_HUMAN Loss-of-function SEC61B variations may cause autosomal dominant polycystic liver disease (PCLD) in patients that lack variations in known causative genes, such as PRKCSH and SEC63.[1]

Function

SC61B_HUMAN Component of SEC61 channel-forming translocon complex that mediates transport of signal peptide-containing precursor polypeptides across the endoplasmic reticulum (ER) (PubMed:12475939). Forms a ribosome receptor and a gated pore in the ER membrane, both functions required for cotranslational translocation of nascent polypeptides (PubMed:12475939). The SEC61 channel is also involved in ER membrane insertion of transmembrane proteins: it mediates membrane insertion of the first few transmembrane segments of proteins, while insertion of subsequent transmembrane regions of multi-pass membrane proteins is mediated by the multi-pass translocon (MPT) complex (PubMed:32820719, PubMed:36261522). The SEC61 channel cooperates with the translocating protein TRAM1 to import nascent proteins into the ER (PubMed:19121997).[2] [3] [4] [5]

Publication Abstract from PubMed

The dynamic ribosome-translocon complex, which resides at the endoplasmic reticulum (ER) membrane, produces a major fraction of the human proteome(1,2). It governs the synthesis, translocation, membrane insertion, N-glycosylation, folding and disulfide-bond formation of nascent proteins. Although individual components of this machinery have been studied at high resolution in isolation(3-7), insights into their interplay in the native membrane remain limited. Here we use cryo-electron tomography, extensive classification and molecular modelling to capture snapshots of mRNA translation and protein maturation at the ER membrane at molecular resolution. We identify a highly abundant classical pre-translocation intermediate with eukaryotic elongation factor 1a (eEF1a) in an extended conformation, suggesting that eEF1a may remain associated with the ribosome after GTP hydrolysis during proofreading. At the ER membrane, distinct polysomes bind to different ER translocons specialized in the synthesis of proteins with signal peptides or multipass transmembrane proteins with the translocon-associated protein complex (TRAP) present in both. The near-complete atomic model of the most abundant ER translocon variant comprising the protein-conducting channel SEC61, TRAP and the oligosaccharyltransferase complex A (OSTA) reveals specific interactions of TRAP with other translocon components. We observe stoichiometric and sub-stoichiometric cofactors associated with OSTA, which are likely to include protein isomerases. In sum, we visualize ER-bound polysomes with their coordinated downstream machinery.

Visualization of translation and protein biogenesis at the ER membrane.,Gemmer M, Chaillet ML, van Loenhout J, Cuevas Arenas R, Vismpas D, Grollers-Mulderij M, Koh FA, Albanese P, Scheltema RA, Howes SC, Kotecha A, Fedry J, Forster F Nature. 2023 Feb;614(7946):160-167. doi: 10.1038/s41586-022-05638-5. Epub 2023 , Jan 25. PMID:36697828[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Besse W, Dong K, Choi J, Punia S, Fedeles SV, Choi M, Gallagher AR, Huang EB, Gulati A, Knight J, Mane S, Tahvanainen E, Tahvanainen P, Sanna-Cherchi S, Lifton RP, Watnick T, Pei YP, Torres VE, Somlo S. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J Clin Invest. 2017 May 1;127(5):1772-1785. doi: 10.1172/JCI90129. Epub 2017 Apr , 4. PMID:28375157 doi:http://dx.doi.org/10.1172/JCI90129
  2. Meacock SL, Lecomte FJ, Crawshaw SG, High S. Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol Biol Cell. 2002 Dec;13(12):4114-29. PMID:12475939 doi:10.1091/mbc.e02-04-0198
  3. Oresic K, Ng CL, Tortorella D. TRAM1 participates in human cytomegalovirus US2 an endoplasmic reticulum membrane glycoprotein. J Biol Chem. 2009 Feb 27;284(9):5905-14. PMID:19121997 doi:10.1074/jbc.M807568200
  4. McGilvray PT, Anghel SA, Sundaram A, Zhong F, Trnka MJ, Fuller JR, Hu H, Burlingame AL, Keenan RJ. An ER translocon for multi-pass membrane protein biogenesis. Elife. 2020 Aug 21;9:e56889. PMID:32820719 doi:10.7554/eLife.56889
  5. Sundaram A, Yamsek M, Zhong F, Hooda Y, Hegde RS, Keenan RJ. Substrate-driven assembly of a translocon for multipass membrane proteins. Nature. 2022 Nov;611(7934):167-172. PMID:36261522 doi:10.1038/s41586-022-05330-8
  6. Gemmer M, Chaillet ML, van Loenhout J, Cuevas Arenas R, Vismpas D, Gröllers-Mulderij M, Koh FA, Albanese P, Scheltema RA, Howes SC, Kotecha A, Fedry J, Förster F. Visualization of translation and protein biogenesis at the ER membrane. Nature. 2023 Feb;614(7946):160-167. PMID:36697828 doi:10.1038/s41586-022-05638-5

Contents


PDB ID 8b6l

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools