8be2
From Proteopedia
Crystal structure of SOS1-Nanobody77
Structural highlights
DiseaseSOS1_HUMAN Defects in SOS1 are the cause of gingival fibromatosis 1 (GGF1) [MIM:135300; also known as GINGF1. Gingival fibromatosis is a rare overgrowth condition characterized by a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of maxillary and mandibular keratinized gingiva. GGF1 is usually transmitted as an autosomal dominant trait, although sporadic cases are common.[1] Defects in SOS1 are the cause of Noonan syndrome type 4 (NS4) [MIM:610733. NS4 is an autosomal dominant disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS4 is associated with juvenile myelomonocytic leukemia (JMML). SOS1 mutations engender a high prevalence of pulmonary valve disease; atrial septal defects are less common.[2] [3] [4] [5] [6] [7] [8] [9] FunctionSOS1_HUMAN Promotes the exchange of Ras-bound GDP by GTP. Publication Abstract from PubMedProtein-protein interactions (PPIs) are central in cell metabolism but research tools for the structural and functional characterization of these PPIs are often missing. Here we introduce broadly applicable immunization (Cross-link PPIs and immunize llamas, ChILL) and selection strategies (Display and co-selection, DisCO) for the discovery of diverse nanobodies that either stabilize or disrupt PPIs in a single experiment. We apply ChILL and DisCO to identify competitive, connective, or fully allosteric nanobodies that inhibit or facilitate the formation of the SOS1*RAS complex and modulate the nucleotide exchange rate on this pivotal GTPase in vitro as well as RAS signalling in cellulo. One of these connective nanobodies fills a cavity that was previously identified as the binding pocket for a series of therapeutic lead compounds. The long complementarity-determining region (CDR3) that penetrates this binding pocket serves as pharmacophore for extending the repertoire of potential leads. Allosteric nanobodies to study the interactions between SOS1 and RAS.,Fischer B, Uchanski T, Sheryazdanova A, Gonzalez S, Volkov AN, Brosens E, Zogg T, Kalichuk V, Ballet S, Versees W, Sablina AA, Pardon E, Wohlkonig A, Steyaert J Nat Commun. 2024 Jul 23;15(1):6214. doi: 10.1038/s41467-024-50349-2. PMID:39043660[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|