8g3e

From Proteopedia

Jump to: navigation, search

Crystal structure of human WDR5 in complex with (1M)-N-[(3,5-difluoro[1,1'-biphenyl]-4-yl)methyl]-6-methyl-4-oxo-1-(pyridin-3-yl)-1,4-dihydropyridazine-3-carboxamide (compound 2, WDR5-MYC inhibitor)

Structural highlights

8g3e is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.33Å
Ligands:YJR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

WDR5_HUMAN Contributes to histone modification. May position the N-terminus of histone H3 for efficient trimethylation at 'Lys-4'. As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. May regulate osteoblasts differentiation.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

WDR5 is a critical chromatin cofactor of MYC. WDR5 interacts with MYC through the WBM pocket and is hypothesized to anchor MYC to chromatin through its WIN site. Blocking the interaction of WDR5 and MYC impairs the recruitment of MYC to its target genes and disrupts the oncogenic function of MYC in cancer development, thus providing a promising strategy for the treatment of MYC-dysregulated cancers. Here, we describe the discovery of novel WDR5 WBM pocket antagonists containing a 1-phenyl dihydropyridazinone 3-carboxamide core that was identified from high-throughput screening and subsequent structure-based design. The leading compounds showed sub-micromolar inhibition in the biochemical assay. Among them, compound 12 can disrupt WDR5-MYC interaction in cells and reduce MYC target gene expression. Our work provides useful probes to study WDR5-MYC interaction and its function in cancers, which can also be used as the starting point for further optimization toward drug-like small molecules.

Discovery and Structure-Based Design of Inhibitors of the WD Repeat-Containing Protein 5 (WDR5)-MYC Interaction.,Ding J, Liu L, Chiang YL, Zhao M, Liu H, Yang F, Shen L, Lin Y, Deng H, Gao J, Sage DR, West L, Llamas LA, Hao X, Kawatkar S, Li E, Jain RK, Tallarico JA, Canham SM, Wang H J Med Chem. 2023 Jun 22;66(12):8310-8323. doi: 10.1021/acs.jmedchem.3c00787. Epub , 2023 Jun 12. PMID:37307526[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem. 2009 Sep 4;284(36):24242-56. Epub 2009 Jun 25. PMID:19556245 doi:M109.014498
  2. Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, Wu J, Lill JR, Zha J. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol. 2009 Mar;29(5):1176-88. doi: 10.1128/MCB.01599-08. Epub 2008 Dec, 22. PMID:19103755 doi:10.1128/MCB.01599-08
  3. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem. 2010 Feb 12;285(7):4268-72. doi: 10.1074/jbc.C109.087981. Epub 2009 , Dec 14. PMID:20018852 doi:10.1074/jbc.C109.087981
  4. Han Z, Guo L, Wang H, Shen Y, Deng XW, Chai J. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell. 2006 Apr 7;22(1):137-44. PMID:16600877 doi:10.1016/j.molcel.2006.03.018
  5. Couture JF, Collazo E, Trievel RC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol. 2006 Aug;13(8):698-703. Epub 2006 Jul 9. PMID:16829960 doi:10.1038/nsmb1116
  6. Ding J, Liu L, Chiang YL, Zhao M, Liu H, Yang F, Shen L, Lin Y, Deng H, Gao J, Sage DR, West L, Llamas LA, Hao X, Kawatkar S, Li E, Jain RK, Tallarico JA, Canham SM, Wang H. Discovery and Structure-Based Design of Inhibitors of the WD Repeat-Containing Protein 5 (WDR5)-MYC Interaction. J Med Chem. 2023 Jun 22;66(12):8310-8323. PMID:37307526 doi:10.1021/acs.jmedchem.3c00787

Contents


PDB ID 8g3e

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools