8q34

From Proteopedia

Jump to: navigation, search

Crystal structure of the first bromodomain of human BRD4 in complex with the ligand ZZ001229a

Structural highlights

8q34 is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.48Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

BRD4_HUMAN Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.[1] [2]

Function

BRD4_HUMAN Plays a role in a process governing chromosomal dynamics during mitosis (By similarity).

Publication Abstract from PubMed

Fragment screening is a popular strategy of generating viable chemical starting points especially for challenging targets. Although fragments provide a better coverage of chemical space and they have typically higher chance of binding, their weak affinity necessitates highly sensitive biophysical assays. Here, we introduce a screening concept that combines evolutionary optimized fragment pharmacophores with the use of a photoaffinity handle that enables high hit rates by LC-MS-based detection. The sensitivity of our screening protocol was further improved by a target-conjugated photocatalyst. We have designed, synthesized, and screened 100 diazirine-tagged fragments against three benchmark and three therapeutically relevant protein targets of different tractability. Our therapeutic targets included a conventional enzyme, the first bromodomain of BRD4, a protein-protein interaction represented by the oncogenic KRas(G12D) protein, and the yet unliganded N-terminal domain of the STAT5B transcription factor. We have discovered several fragment hits against all three targets and identified their binding sites via enzymatic digestion, structural studies and modeling. Our results revealed that this protocol outperforms screening traditional fully functionalized and photoaffinity fragments in better exploration of the available binding sites and higher hit rates observed for even difficult targets.

Mapping protein binding sites by photoreactive fragment pharmacophores.,Abranyi-Balogh P, Bajusz D, Orgovan Z, Keeley AB, Petri L, Peczka N, Szalai TV, Palfy G, Gadanecz M, Grant EK, Imre T, Takacs T, Randelovic I, Baranyi M, Marton A, Schlosser G, Ashraf QF, de Araujo ED, Karancsi T, Buday L, Tovari J, Perczel A, Bush JT, Keseru GM Commun Chem. 2024 Jul 31;7(1):168. doi: 10.1038/s42004-024-01252-w. PMID:39085342[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
0 reviews cite this structure
No citations found

References

  1. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003 Jan 15;63(2):304-7. PMID:12543779
  2. French CA, Miyoshi I, Aster JC, Kubonishi I, Kroll TG, Dal Cin P, Vargas SO, Perez-Atayde AR, Fletcher JA. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am J Pathol. 2001 Dec;159(6):1987-92. PMID:11733348 doi:10.1016/S0002-9440(10)63049-0
  3. Ábrányi-Balogh P, Bajusz D, Orgován Z, Keeley AB, Petri L, Péczka N, Szalai TV, Pálfy G, Gadanecz M, Grant EK, Imre T, Takács T, Ranđelović I, Baranyi M, Marton A, Schlosser G, Ashraf QF, de Araujo ED, Karancsi T, Buday L, Tóvári J, Perczel A, Bush JT, Keserű GM. Mapping protein binding sites by photoreactive fragment pharmacophores. Commun Chem. 2024 Jul 31;7(1):168. PMID:39085342 doi:10.1038/s42004-024-01252-w

Contents


PDB ID 8q34

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools