8unz

From Proteopedia

Jump to: navigation, search

CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class O)

Structural highlights

8unz is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.8Å
Ligands:G1I, GTP
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

GNAS2_HUMAN Pseudopseudohypoparathyroidism;Pseudohypoparathyroidism type 1A;Progressive osseous heteroplasia;Polyostotic fibrous dysplasia;Monostotic fibrous dysplasia;Pseudohypoparathyroidism type 1C;Pseudohypoparathyroidism type 1B;McCune-Albright syndrome. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Most affected individuals have defects in methylation of the gene. In some cases microdeletions involving the STX16 appear to cause loss of methylation at exon A/B of GNAS, resulting in PHP1B. Paternal uniparental isodisomy have also been observed. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry.

Function

GNAS2_HUMAN Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs) (PubMed:17110384). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP (PubMed:26206488, PubMed:8702665). GNAS functions downstream of several GPCRs, including beta-adrenergic receptors (PubMed:21488135). Stimulates the Ras signaling pathway via RAPGEF2 (PubMed:12391161).[1] [2] [3] [4] [5]

Publication Abstract from PubMed

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Galpha subunit(1). To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory G(s) protein in complex with the beta(2)-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Galpha switch regions and the alpha5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the alpha-helical domain against the nucleotide-bound Ras-homology domain correlates with alpha5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.

Time-resolved cryo-EM of G-protein activation by a GPCR.,Papasergi-Scott MM, Perez-Hernandez G, Batebi H, Gao Y, Eskici G, Seven AB, Panova O, Hilger D, Casiraghi M, He F, Maul L, Gmeiner P, Kobilka BK, Hildebrand PW, Skiniotis G Nature. 2024 May;629(8014):1182-1191. doi: 10.1038/s41586-024-07153-1. Epub 2024 , Mar 13. PMID:38480881[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Pak Y, Pham N, Rotin D. Direct binding of the beta1 adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Mol Cell Biol. 2002 Nov;22(22):7942-52. PMID:12391161
  2. Gao X, Sadana R, Dessauer CW, Patel TB. Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem. 2007 Jan 5;282(1):294-302. Epub 2006 Nov 16. PMID:17110384 doi:http://dx.doi.org/10.1074/jbc.M607522200
  3. Thiele S, de Sanctis L, Werner R, Grotzinger J, Aydin C, Juppner H, Bastepe M, Hiort O. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gsalpha-receptor interaction. Hum Mutat. 2011 Jun;32(6):653-60. doi: 10.1002/humu.21489. Epub 2011 Apr 12. PMID:21488135 doi:http://dx.doi.org/10.1002/humu.21489
  4. Brand CS, Sadana R, Malik S, Smrcka AV, Dessauer CW. Adenylyl Cyclase 5 Regulation by Gbetagamma Involves Isoform-Specific Use of Multiple Interaction Sites. Mol Pharmacol. 2015 Oct;88(4):758-67. doi: 10.1124/mol.115.099556. Epub 2015 Jul , 23. PMID:26206488 doi:http://dx.doi.org/10.1124/mol.115.099556
  5. Farfel Z, Iiri T, Shapira H, Roitman A, Mouallem M, Bourne HR. Pseudohypoparathyroidism, a novel mutation in the betagamma-contact region of Gsalpha impairs receptor stimulation. J Biol Chem. 1996 Aug 16;271(33):19653-5. PMID:8702665
  6. Papasergi-Scott MM, Pérez-Hernández G, Batebi H, Gao Y, Eskici G, Seven AB, Panova O, Hilger D, Casiraghi M, He F, Maul L, Gmeiner P, Kobilka BK, Hildebrand PW, Skiniotis G. Time-resolved cryo-EM of G-protein activation by a GPCR. Nature. 2024 May;629(8014):1182-1191. PMID:38480881 doi:10.1038/s41586-024-07153-1

Contents


PDB ID 8unz

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools