8w9a
From Proteopedia
CryoEM structure of human PI3K-alpha (P85/P110-H1047R) with QR-7909 binding at an allosteric site
Structural highlights
DiseasePK3CA_HUMAN Note=Most of the cancer-derived mutations are missense mutations and map to one of the three hotspots: Glu-542; Glu-545 and His-1047. Mutated isoforms participate in cellular transformation and tumorigenesis induced by oncogenic receptor tyrosine kinases (RTKs) and HRAS1/KRAS. Interaction with HRAS1/KRAS is required for Ras-driven tumor formation. Mutations increasing the lipid kinase activity are required for oncogenic signaling. The protein kinase activity may not be required for tumorigenesis. Defects in PIK3CA are associated with colorectal cancer (CRC) [MIM:114500. Defects in PIK3CA are a cause of susceptibility to breast cancer (BC) [MIM:114480. A common malignancy originating from breast epithelial tissue. Breast neoplasms can be distinguished by their histologic pattern. Invasive ductal carcinoma is by far the most common type. Breast cancer is etiologically and genetically heterogeneous. Important genetic factors have been indicated by familial occurrence and bilateral involvement. Mutations at more than one locus can be involved in different families or even in the same case. Defects in PIK3CA are a cause of susceptibility to ovarian cancer (OC) [MIM:167000. Ovarian cancer common malignancy originating from ovarian tissue. Although many histologic types of ovarian neoplasms have been described, epithelial ovarian carcinoma is the most common form. Ovarian cancers are often asymptomatic and the recognized signs and symptoms, even of late-stage disease, are vague. Consequently, most patients are diagnosed with advanced disease. Defects in PIK3CA may underlie hepatocellular carcinoma (HCC) [MIM:114550.[1] Defects in PIK3CA are a cause of keratosis seborrheic (KERSEB) [MIM:182000. A common benign skin tumor. Seborrheic keratoses usually begin with the appearance of one or more sharply defined, light brown, flat macules. The lesions may be sparse or numerous. As they initially grow, they develop a velvety to finely verrucous surface, followed by an uneven warty surface with multiple plugged follicles and a dull or lackluster appearance.[2] Defects in PIK3CA are the cause of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE) [MIM:612918. CLOVE is a sporadically occurring, non-hereditary disorder characterized by asymmetric somatic hypertrophy and anomalies in multiple organs. It is defined by four main clinical findings: congenital lipomatous overgrowth, vascular malformations, epidermal nevi, and skeletal/spinal abnormalities. The presence of truncal overgrowth and characteristic patterned macrodactyly at birth differentiates CLOVE from other syndromic forms of overgrowth.[3] FunctionPK3CA_HUMAN Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns (Phosphatidylinositol), PtdIns4P (Phosphatidylinositol 4-phosphate) and PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation in breast cancer cells through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. Has also serine-protein kinase activity: phosphorylates PIK3R1 (p85alpha regulatory subunit), EIF4EBP1 and HRAS.[4] Publication Abstract from PubMedPI3Kalpha is a lipid kinase that phosphorylates PIP2 and generates PIP3. The hyperactive PI3Kalpha mutation, H1047R, accounts for about 14% of breast cancer, making it a highly attractive target for drug discovery. Here, we report the cryo-EM structures of PI3Kalpha(H1047R) bound to two different allosteric inhibitors QR-7909 and QR-8557 at a global resolution of 2.7 A and 3.0 A, respectively. The structures reveal two distinct binding pockets on the opposite sides of the activation loop. Structural and MD simulation analyses show that the allosteric binding of QR-7909 and QR-8557 inhibit PI3Kalpha(H1047R) hyper-activity by reducing the fluctuation and mobility of the activation loop. Our work provides a strong rational basis for a further optimization and development of highly selective drug candidates to treat PI3Kalpha(H1047R)-driven cancers. Cryo-EM structures reveal two allosteric inhibition modes of PI3Kalpha(H1047R) involving a re-shaping of the activation loop.,Huang X, Wang K, Han J, Chen X, Wang Z, Wu T, Yu B, Zhao F, Wang X, Li H, Xie Z, Zhu X, Zhong W, Ren X Structure. 2024 Jul 11;32(7):907-917.e7. doi: 10.1016/j.str.2024.03.007. Epub , 2024 Apr 5. PMID:38582077[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|