8yjh

From Proteopedia

Jump to: navigation, search

Structure of the human endogenous PCNA-FEN1 complex - State A

Structural highlights

8yjh is a 8 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.68Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PCNA_HUMAN Auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication by increasing the polymerase's processibility during elongation of the leading strand. Induces a robust stimulatory effect on the 3'-5' exonuclease and 3'-phosphodiesterase, but not apurinic-apyrimidinic (AP) endonuclease, APEX2 activities. Has to be loaded onto DNA in order to be able to stimulate APEX2. Plays a key role in DNA damage response (DDR) by being conveniently positioned at the replication fork to coordinate DNA replication with DNA repair and DNA damage tolerance pathways. Acts as a loading platform to recruit DDR proteins that allow completion of DNA replication after DNA damage and promote postreplication repair: Monoubiquitinated PCNA leads to recruitment of translesion (TLS) polymerases, while 'Lys-63'-linked polyubiquitination of PCNA is involved in error-free pathway and employs recombination mechanisms to synthesize across the lesion.[1] [2]

Publication Abstract from PubMed

PCNA is a master coordinator of many DNA-metabolic events. During DNA replication, the maturation of Okazaki fragments involves at least four DNA enzymes, all of which contain PCNA-interacting motifs. However, the temporal relationships and functional modulations between these PCNA-binding proteins are unclear. Here, we developed a strategy to purify endogenous PCNA-containing complexes from native chromatin, and characterized their structures using cryo-EM. Two structurally resolved classes (PCNA-FEN1 and PCNA-FEN1-RNaseH2 complexes) have captured a series of 3D snapshots for the primer-removal steps of Okazaki fragment maturation. These structures show that product release from FEN1 is a rate-liming step. Furthermore, both FEN1 and RNaseH2 undergo continuous conformational changes on PCNA that result in constant fluctuations in the bending angle of substrate DNA at the nick site, implying that these enzymes could regulate each other through conformational modulation of the bound DNA. The structures of the PCNA-FEN1-RNaseH2 complex confirm the toolbelt function of PCNA and suggests a potential unrecognized role of RNaseH2, as a dsDNA binding protein, in promoting the 5'-flap cleaving activity of FEN1.

Structural insight into Okazaki fragment maturation mediated by PCNA-bound FEN1 and RNaseH2.,Tian Y, Li N, Li Q, Gao N EMBO J. 2024 Nov 22. doi: 10.1038/s44318-024-00296-x. PMID:39578540[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Burkovics P, Hajdu I, Szukacsov V, Unk I, Haracska L. Role of PCNA-dependent stimulation of 3'-phosphodiesterase and 3'-5' exonuclease activities of human Ape2 in repair of oxidative DNA damage. Nucleic Acids Res. 2009 Jul;37(13):4247-55. doi: 10.1093/nar/gkp357. Epub 2009, May 13. PMID:19443450 doi:10.1093/nar/gkp357
  2. Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12411-6. Epub 2008 Aug 21. PMID:18719106 doi:0805685105
  3. Tian Y, Li N, Li Q, Gao N. Structural insight into Okazaki fragment maturation mediated by PCNA-bound FEN1 and RNaseH2. EMBO J. 2024 Nov 22. PMID:39578540 doi:10.1038/s44318-024-00296-x

Contents


PDB ID 8yjh

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools