| Structural highlights
Disease
NALP2_HUMAN The disease is caused by variants affecting the gene represented in this entry.B2MG_HUMAN Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:241600. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.[1] Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]
Function
R5AK10_HUMAN NALP2_HUMAN Suppresses TNF- and CD40-induced NFKB1 activity at the level of the IKK complex, by inhibiting NFKBIA degradation induced by TNF. When associated with PYCARD, activates CASP1, leading to the secretion of mature pro-inflammatory cytokine IL1B. May be a component of the inflammasome, a protein complex which also includes PYCARD, CARD8 and CASP1 and whose function would be the activation of pro-inflammatory caspases.[15] B2MG_HUMAN Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system.
Publication Abstract from PubMed
Type 1 diabetes (T1D) is an autoimmune disease involving T cell-mediated destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans. CD8(+) T cells, responding to beta cell peptides presented by class I major histocompatibility complex (MHC) molecules, are important effectors leading to beta cell elimination. Human leukocyte antigen (HLA) B*39:06, B*39:01, and B*38:01 are closely related class I MHC allotypes that nonetheless show differential association with T1D. HLA-B*39:06 is the most predisposing of all HLA class I molecules and is associated with early age at disease onset. B*39:01 is also associated with susceptibility to T1D, but to a lesser extent, though differing from B*39:06 by only two amino acids. HLA-B*38:01, in contrast, is associated with protection from the disease. Upon identifying a peptide that binds to both HLA-B*39:06 and B*39:01, we determined the respective X-ray structures of the two allotypes presenting this peptide to 1.7 A resolution. The peptide residues available for T cell receptor contact and those serving as anchors were identified. Analysis of the F pocket of HLA-B*39:06 and B*39:01 provided an explanation for the distinct peptide C-terminus preferences of the two allotypes. Structure-based modeling of the protective HLA-B*38:01 suggested a potential reason for its peptide preferences and its reduced propensity to present 8-mer peptides compared to B*39:06. Notably, the three allotypes showed differential binding to peptides derived from beta cell autoantigens. Taken together, our findings should facilitate identification of disease-relevant candidate T cell epitopes and structure-guided therapeutics to interfere with peptide binding.
Structural and biochemical analysis of highly similar HLA-B allotypes differentially associated with type 1 diabetes.,Sharma R, Amdare NP, Ghosh A, Schloss J, Sidney J, Garforth SJ, Lopez Y, Celikgil A, Sette A, Almo SC, DiLorenzo TP J Biol Chem. 2024 Aug 20:107702. doi: 10.1016/j.jbc.2024.107702. PMID:39173948[16]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S, Waldmann TA, Robinson JM, Anderson CL. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5084-9. Epub 2006 Mar 20. PMID:16549777 doi:10.1073/pnas.0600548103
- ↑ Gorevic PD, Munoz PC, Casey TT, DiRaimondo CR, Stone WJ, Prelli FC, Rodrigues MM, Poulik MD, Frangione B. Polymerization of intact beta 2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7908-12. PMID:3532124
- ↑ Argiles A, Derancourt J, Jauregui-Adell J, Mion C, Demaille JG. Biochemical characterization of serum and urinary beta 2 microglobulin in end-stage renal disease patients. Nephrol Dial Transplant. 1992;7(11):1106-10. PMID:1336137
- ↑ Momoi T, Suzuki M, Titani K, Hisanaga S, Ogawa H, Saito A. Amino acid sequence of a modified beta 2-microglobulin in renal failure patient urine and long-term dialysis patient blood. Clin Chim Acta. 1995 May 15;236(2):135-44. PMID:7554280
- ↑ Cunningham BA, Wang JL, Berggard I, Peterson PA. The complete amino acid sequence of beta 2-microglobulin. Biochemistry. 1973 Nov 20;12(24):4811-22. PMID:4586824
- ↑ Haag-Weber M, Mai B, Horl WH. Isolation of a granulocyte inhibitory protein from uraemic patients with homology of beta 2-microglobulin. Nephrol Dial Transplant. 1994;9(4):382-8. PMID:8084451
- ↑ Trinh CH, Smith DP, Kalverda AP, Phillips SE, Radford SE. Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9771-6. Epub 2002 Jul 15. PMID:12119416 doi:10.1073/pnas.152337399
- ↑ Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY. A structural basis for immunodominant human T cell receptor recognition. Nat Immunol. 2003 Jul;4(7):657-63. Epub 2003 Jun 8. PMID:12796775 doi:10.1038/ni942
- ↑ Kihara M, Chatani E, Iwata K, Yamamoto K, Matsuura T, Nakagawa A, Naiki H, Goto Y. Conformation of amyloid fibrils of beta2-microglobulin probed by tryptophan mutagenesis. J Biol Chem. 2006 Oct 13;281(41):31061-9. Epub 2006 Aug 10. PMID:16901902 doi:10.1074/jbc.M605358200
- ↑ Eakin CM, Berman AJ, Miranker AD. A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol. 2006 Mar;13(3):202-8. Epub 2006 Feb 19. PMID:16491088 doi:10.1038/nsmb1068
- ↑ Iwata K, Matsuura T, Sakurai K, Nakagawa A, Goto Y. High-resolution crystal structure of beta2-microglobulin formed at pH 7.0. J Biochem. 2007 Sep;142(3):413-9. Epub 2007 Jul 23. PMID:17646174 doi:10.1093/jb/mvm148
- ↑ Ricagno S, Colombo M, de Rosa M, Sangiovanni E, Giorgetti S, Raimondi S, Bellotti V, Bolognesi M. DE loop mutations affect beta2-microglobulin stability and amyloid aggregation. Biochem Biophys Res Commun. 2008 Dec 5;377(1):146-50. Epub 2008 Oct 1. PMID:18835253 doi:S0006-291X(08)01866-4
- ↑ Esposito G, Ricagno S, Corazza A, Rennella E, Gumral D, Mimmi MC, Betto E, Pucillo CE, Fogolari F, Viglino P, Raimondi S, Giorgetti S, Bolognesi B, Merlini G, Stoppini M, Bolognesi M, Bellotti V. The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. J Mol Biol. 2008 May 9;378(4):887-97. Epub 2008 Mar 8. PMID:18395224 doi:10.1016/j.jmb.2008.03.002
- ↑ Ricagno S, Raimondi S, Giorgetti S, Bellotti V, Bolognesi M. Human beta-2 microglobulin W60V mutant structure: Implications for stability and amyloid aggregation. Biochem Biophys Res Commun. 2009 Mar 13;380(3):543-7. Epub 2009 Jan 25. PMID:19284997 doi:10.1016/j.bbrc.2009.01.116
- ↑ Bruey JM, Bruey-Sedano N, Newman R, Chandler S, Stehlik C, Reed JC. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages. J Biol Chem. 2004 Dec 10;279(50):51897-907. PMID:15456791 doi:10.1074/jbc.M406741200
- ↑ Sharma R, Amdare NP, Ghosh A, Schloss J, Sidney J, Garforth SJ, Lopez Y, Celikgil A, Sette A, Almo SC, DiLorenzo TP. Structural and biochemical analysis of highly similar HLA-B allotypes differentially associated with type 1 diabetes. J Biol Chem. 2024 Aug 20:107702. PMID:39173948 doi:10.1016/j.jbc.2024.107702
|