9fbx

From Proteopedia

Jump to: navigation, search

C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 5-(1-benzyl-4-chloro-1H-imidazol-2-yl)-1,3-dimethylpyridin-2(1H)-one

Structural highlights

9fbx is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.602Å
Ligands:A1IBV, EDO, PE4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BRD2_HUMAN May play a role in spermatogenesis or folliculogenesis (By similarity). Binds hyperacetylated chromatin and plays a role in the regulation of transcription, probably by chromatin remodeling. Regulates transcription of the CCND1 gene. Plays a role in nucleosome assembly.[1]

Publication Abstract from PubMed

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail N-acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 (70) that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration. This focused two-phase explore-exploit medicinal chemistry effort delivered the candidate molecule in 3 months with less than 100 final compounds synthesized.

Structure- and Property-Based Optimization of Efficient Pan-Bromodomain and Extra Terminal Inhibitors to Identify Oral and Intravenous Candidate I-BET787.,Hirst DJ, Bamborough P, Al-Mahdi N, Angell DC, Barnett HA, Baxter A, Bit RA, Brown JA, Chung CW, Craggs PD, Davis RP, Demont EH, Ferrie A, Gordon LJ, Harada I, Ho TCT, Holyer ID, Hooper-Greenhill E, Jones KL, Lindon MJ, Lovatt C, Lugo D, Maller C, McGonagle G, Messenger C, Mitchell DJ, Pascoe DD, Patel VK, Patten C, Poole DL, Shah RR, Rioja I, Stafford KAJ, Tape D, Taylor S, Theodoulou NH, Tomlinson L, Wall ID, Wellaway CR, White G, Prinjha RK, Humphreys PG J Med Chem. 2024 Jun 27;67(12):10464-10489. doi: 10.1021/acs.jmedchem.4c00959. , Epub 2024 Jun 12. PMID:38866424[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. LeRoy G, Rickards B, Flint SJ. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell. 2008 Apr 11;30(1):51-60. doi: 10.1016/j.molcel.2008.01.018. PMID:18406326 doi:10.1016/j.molcel.2008.01.018
  2. Hirst DJ, Bamborough P, Al-Mahdi N, Angell DC, Barnett HA, Baxter A, Bit RA, Brown JA, Chung CW, Craggs PD, Davis RP, Demont EH, Ferrie A, Gordon LJ, Harada I, Ho TCT, Holyer ID, Hooper-Greenhill E, Jones KL, Lindon MJ, Lovatt C, Lugo D, Maller C, McGonagle G, Messenger C, Mitchell DJ, Pascoe DD, Patel VK, Patten C, Poole DL, Shah RR, Rioja I, Stafford KAJ, Tape D, Taylor S, Theodoulou NH, Tomlinson L, Wall ID, Wellaway CR, White G, Prinjha RK, Humphreys PG. Structure Terminal Inhibitors to Identify Oral and Intravenous Candidate I-BET787. J Med Chem. 2024 Jun 27;67(12):10464-10489. PMID:38866424 doi:10.1021/acs.jmedchem.4c00959

Contents


PDB ID 9fbx

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools