Structural highlights
Function
GNAI1_HUMAN Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.[1] [2]
Publication Abstract from PubMed
Distinct ligands for the same G-protein coupled receptor (GPCR) activate intracellular signaling partners to varying extents, but the molecular mechanisms driving these differences remain elusive. Hypothesizing that such differences in signaling efficacy may be captured structurally in intermediate states under non-equilibrium conditions, we implemented a time-resolved (TR) cryo-EM approach to visualize the GTP-induced activation of the Galphaibetagamma heterotrimer by the mu-opioid receptor (MOR) bound to three ligands displaying partial, full, or super-agonism on the receptor(1). We resolved ensembles of conformational states along the G-protein activation pathway, including a previously unobserved intermediate state that enabled us to visualize receptor dynamics as a function of bound ligand. The results demonstrate ligand-dependent differences in state occupancy and conformational stability, with higher ligand efficacy correlating with increased dynamics of the receptor's transmembrane (TM) helices 5 and 6. Furthermore, we identify key mechanistic differences in the GTP-induced activation of Gi compared to Gs that likely underlie their distinct activation kinetics. Corroborated by molecular dynamics (MD) simulations and single-molecule fluorescence assays, these findings provide a dynamic structural landscape of GPCR-G-protein interactions for ligands of different efficacy and suggest partial agonists may produce a 'kinetic trap' during G-protein activation.
Non-equilibrium snapshots of ligand efficacy at the mu-opioid receptor.,Robertson MJ, Modak A, Papasergi-Scott MM, Hu M, Peroto MC, Varga BR, Majumdar S, Kalathur R, Blanchard SC, Skiniotis G Nature. 2025 Dec 22. doi: 10.1038/s41586-025-10056-4. PMID:41430437[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Cho H, Kehrl JH. Localization of Gi alpha proteins in the centrosomes and at the midbody: implication for their role in cell division. J Cell Biol. 2007 Jul 16;178(2):245-55. PMID:17635935 doi:10.1083/jcb.200604114
- ↑ Johnston CA, Siderovski DP. Structural basis for nucleotide exchange on G alpha i subunits and receptor coupling specificity. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):2001-6. Epub 2007 Jan 30. PMID:17264214
- ↑ Robertson MJ, Modak A, Papasergi-Scott MM, Hu M, Peroto MC, Varga BR, Majumdar S, Kalathur R, Blanchard SC, Skiniotis G. Non-equilibrium snapshots of ligand efficacy at the μ-opioid receptor. Nature. 2025 Dec 22. PMID:41430437 doi:10.1038/s41586-025-10056-4