1gv0

From Proteopedia

Jump to: navigation, search

Structural Basis for Thermophilic Protein Stability: Structures of Thermophilic and Mesophilic Malate Dehydrogenases

Structural highlights

1gv0 is a 2 chain structure with sequence from Chlorobaculum tepidum. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:NAD
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MDH_CHLTE Catalyzes the reversible oxidation of malate to oxaloacetate.[HAMAP-Rule:MF_00487]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The three-dimensional structure of four malate dehydrogenases (MDH) from thermophilic and mesophilic phototropic bacteria have been determined by X-ray crystallography and the corresponding structures compared. In contrast to the dimeric quaternary structure of most MDHs, these MDHs are tetramers and are structurally related to tetrameric malate dehydrogenases from Archaea and to lactate dehydrogenases. The tetramers are dimers of dimers, where the structures of each subunit and the dimers are similar to the dimeric malate dehydrogenases. The difference in optimal growth temperature of the corresponding organisms is relatively small, ranging from 32 to 55 degrees C. Nevertheless, on the basis of the four crystal structures, a number of factors that are likely to contribute to the relative thermostability in the present series have been identified. It appears from the results obtained, that the difference in thermostability between MDH from the mesophilic Chlorobium vibrioforme on one hand and from the moderate thermophile Chlorobium tepidum on the other hand is mainly due to the presence of polar residues that form additional hydrogen bonds within each subunit. Furthermore, for the even more thermostable Chloroflexus aurantiacus MDH, the use of charged residues to form additional ionic interactions across the dimer-dimer interface is favored. This enzyme has a favorable intercalation of His-Trp as well as additional aromatic contacts at the monomer-monomer interface in each dimer. A structural alignment of tetrameric and dimeric prokaryotic MDHs reveal that structural elements that differ among dimeric and tetrameric MDHs are located in a few loop regions.

Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases.,Dalhus B, Saarinen M, Sauer UH, Eklund P, Johansson K, Karlsson A, Ramaswamy S, Bjork A, Synstad B, Naterstad K, Sirevag R, Eklund H J Mol Biol. 2002 May 3;318(3):707-21. PMID:12054817[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
4 reviews cite this structure
Eijsink et al. (2004)
No citations found

See Also

References

  1. Dalhus B, Saarinen M, Sauer UH, Eklund P, Johansson K, Karlsson A, Ramaswamy S, Bjork A, Synstad B, Naterstad K, Sirevag R, Eklund H. Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases. J Mol Biol. 2002 May 3;318(3):707-21. PMID:12054817 doi:10.1016/S0022-2836(02)00050-5

Contents


PDB ID 1gv0

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools