1he2
From Proteopedia
Human biliverdin IX beta reductase: NADP/biliverdin IX alpha ternary complex
Structural highlights
FunctionBLVRB_HUMAN Broad specificity oxidoreductase that catalyzes the NADPH-dependent reduction of a variety of flavins, such as riboflavin, FAD or FMN, biliverdins, methemoglobin and PQQ (pyrroloquinoline quinone). Contributes to heme catabolism and metabolizes linear tetrapyrroles. Can also reduce the complexed Fe(3+) iron to Fe(2+) in the presence of FMN and NADPH. In the liver, converts biliverdin to bilirubin.[1] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBiliverdin IXbeta reductase (BVR-B) catalyzes the pyridine nucleotide-dependent production of bilirubin-IXbeta, the major heme catabolite during early fetal development. BVR-B displays a preference for biliverdin isomers without propionates straddling the C10 position, in contrast to biliverdin IXalpha reductase (BVR-A), the major form of BVR in adult human liver. In addition to its tetrapyrrole clearance role in the fetus, BVR-B has flavin and ferric reductase activities in the adult. We have solved the structure of human BVR-B in complex with NADP+ at 1.15 A resolution. Human BVR-B is a monomer displaying an alpha/beta dinucleotide binding fold. The structures of ternary complexes with mesobiliverdin IValpha, biliverdin IXalpha, FMN and lumichrome show that human BVR-B has a single substrate binding site, to which substrates and inhibitors bind primarily through hydrophobic interactions, explaining its broad specificity. The reducible atom of both biliverdin and flavin substrates lies above the reactive C4 of the cofactor, an appropriate position for direct hydride transfer. BVR-B discriminates against the biliverdin IXalpha isomer through steric hindrance at the bilatriene side chain binding pockets. The structure also explains the enzyme's preference for NADP(H) and its B-face stereospecificity. Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme.,Pereira PJ, Macedo-Ribeiro S, Parraga A, Perez-Luque R, Cunningham O, Darcy K, Mantle TJ, Coll M Nat Struct Biol. 2001 Mar;8(3):215-20. PMID:11224564[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|