1he3

From Proteopedia

Jump to: navigation, search

Human biliverdin IX beta reductase: NADP/mesobiliverdin IV alpha ternary complex

Structural highlights

1he3 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.4Å
Ligands:MBV, NAP
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BLVRB_HUMAN Broad specificity oxidoreductase that catalyzes the NADPH-dependent reduction of a variety of flavins, such as riboflavin, FAD or FMN, biliverdins, methemoglobin and PQQ (pyrroloquinoline quinone). Contributes to heme catabolism and metabolizes linear tetrapyrroles. Can also reduce the complexed Fe(3+) iron to Fe(2+) in the presence of FMN and NADPH. In the liver, converts biliverdin to bilirubin.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Biliverdin IXbeta reductase (BVR-B) catalyzes the pyridine nucleotide-dependent production of bilirubin-IXbeta, the major heme catabolite during early fetal development. BVR-B displays a preference for biliverdin isomers without propionates straddling the C10 position, in contrast to biliverdin IXalpha reductase (BVR-A), the major form of BVR in adult human liver. In addition to its tetrapyrrole clearance role in the fetus, BVR-B has flavin and ferric reductase activities in the adult. We have solved the structure of human BVR-B in complex with NADP+ at 1.15 A resolution. Human BVR-B is a monomer displaying an alpha/beta dinucleotide binding fold. The structures of ternary complexes with mesobiliverdin IValpha, biliverdin IXalpha, FMN and lumichrome show that human BVR-B has a single substrate binding site, to which substrates and inhibitors bind primarily through hydrophobic interactions, explaining its broad specificity. The reducible atom of both biliverdin and flavin substrates lies above the reactive C4 of the cofactor, an appropriate position for direct hydride transfer. BVR-B discriminates against the biliverdin IXalpha isomer through steric hindrance at the bilatriene side chain binding pockets. The structure also explains the enzyme's preference for NADP(H) and its B-face stereospecificity.

Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme.,Pereira PJ, Macedo-Ribeiro S, Parraga A, Perez-Luque R, Cunningham O, Darcy K, Mantle TJ, Coll M Nat Struct Biol. 2001 Mar;8(3):215-20. PMID:11224564[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cunningham O, Gore MG, Mantle TJ. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B). Biochem J. 2000 Jan 15;345 Pt 2:393-9. PMID:10620517
  2. Pereira PJ, Macedo-Ribeiro S, Parraga A, Perez-Luque R, Cunningham O, Darcy K, Mantle TJ, Coll M. Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Nat Struct Biol. 2001 Mar;8(3):215-20. PMID:11224564 doi:10.1038/84948

Contents


PDB ID 1he3

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools