1hzi

From Proteopedia

Jump to: navigation, search

INTERLEUKIN-4 MUTANT E9A

Structural highlights

1hzi is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.05Å
Ligands:SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

IL4_HUMAN Genetic variations in IL4 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[1]

Function

IL4_HUMAN Participates in at least several B-cell activation processes as well as of other cell types. It is a costimulator of DNA-synthesis. It induces the expression of class II MHC molecules on resting B-cells. It enhances both secretion and cell surface expression of IgE and IgG1. It also regulates the expression of the low affinity Fc receptor for IgE (CD23) on both lymphocytes and monocytes.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Interleukin 4 (IL-4) is a pleiotropic cytokine which induces T-cell differentiation and class switching of B cells. It therefore plays a central role in the development of allergies and asthma. An IL-4 variant in which Glu9 was mutated to alanine shows an 800-fold drop in binding affinity towards its high-affinity receptor chain. As shown by surface plasmon resonance measurements, this mostly arises from a decreased association rate. Here, the crystal structure of this mutant is reported. It reveals that the protein has a virtually identical structure to the wild type, showing that the unusual behaviour of the mutated protein is not a consequence of misfolding. The possibility that polar interactions in the encounter complex have a steering effect is discussed.

Structure of interleukin 4 mutant E9A suggests polar steering in receptor-complex formation.,Hulsmeyer M, Scheufler C, Dreyer MK Acta Crystallogr D Biol Crystallogr. 2001 Sep;57(Pt 9):1334-6. Epub 2001, Aug 23. PMID:11526337[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Zee RY, Cook NR, Cheng S, Reynolds R, Erlich HA, Lindpaintner K, Ridker PM. Polymorphism in the P-selectin and interleukin-4 genes as determinants of stroke: a population-based, prospective genetic analysis. Hum Mol Genet. 2004 Feb 15;13(4):389-96. Epub 2003 Dec 17. PMID:14681304 doi:10.1093/hmg/ddh039
  2. Hulsmeyer M, Scheufler C, Dreyer MK. Structure of interleukin 4 mutant E9A suggests polar steering in receptor-complex formation. Acta Crystallogr D Biol Crystallogr. 2001 Sep;57(Pt 9):1334-6. Epub 2001, Aug 23. PMID:11526337

Contents


PDB ID 1hzi

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools