1mv0
From Proteopedia
NMR STRUCTURE OF THE TUMOR SUPPRESSOR BIN1: ALTERNATIVE SPLICING IN MELANOMA AND INTERACTION WITH C-MYC
Structural highlights
DiseaseMYC_HUMAN Note=Overexpression of MYC is implicated in the etiology of a variety of hematopoietic tumors. Note=A chromosomal aberration involving MYC may be a cause of a form of B-cell chronic lymphocytic leukemia. Translocation t(8;12)(q24;q22) with BTG1. Defects in MYC are a cause of Burkitt lymphoma (BL) [MIM:113970. A form of undifferentiated malignant lymphoma commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. Note=Chromosomal aberrations involving MYC are usually found in Burkitt lymphoma. Translocations t(8;14), t(8;22) or t(2;8) which juxtapose MYC to one of the heavy or light chain immunoglobulin gene loci. FunctionMYC_HUMAN Participates in the regulation of gene transcription. Binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3'. Seems to activate the transcription of growth-related genes. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe N terminus of the c-Myc oncoprotein interacts with Bin1, a ubiquitously expressed nucleocytoplasmic protein with features of a tumor suppressor. The c-Myc/Bin1 interaction is dependent on the highly conserved Myc Box 1 (MB1) sequence of c-Myc. The c-Myc/Bin1 interaction has potential regulatory significance as c-Myc-mediated transformation and apoptosis can be modulated by the expression of Bin1. Multiple splicing of the Bin1 transcript results in ubiquitous, tissue-specific and tumor-specific populations of Bin1 proteins in vivo. We report on the structural features of the interaction between c-Myc and Bin1, and describe two mechanisms by which the binding of different Bin1 isoforms to c-Myc may be regulated in cells. Our findings identify a consensus class II SH3-binding motif in c-Myc and the C-terminal SH3 domain of Bin1 as the primary structure determinants of their interaction. We present biochemical and structural evidence that tumor-specific isoforms of Bin1 are precluded from interaction with c-Myc through an intramolecular polyproline-SH3 domain interaction that inhibits the Bin1 SH3 domain from binding to c-Myc. Furthermore, c-Myc/Bin1 interaction can be inhibited by phosphorylation of c-Myc at Ser62, a functionally important residue found within the c-Myc SH3-binding motif. Our data provide a structure-based model of the c-Myc/Bin1 interaction and suggest a mode of regulation that may be important for c-Myc function as a regulator of gene transcription. A structure-based model of the c-Myc/Bin1 protein interaction shows alternative splicing of Bin1 and c-Myc phosphorylation are key binding determinants.,Pineda-Lucena A, Ho CS, Mao DY, Sheng Y, Laister RC, Muhandiram R, Lu Y, Seet BT, Katz S, Szyperski T, Penn LZ, Arrowsmith CH J Mol Biol. 2005 Aug 5;351(1):182-94. PMID:15992821[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|