1r8j
From Proteopedia
Crystal Structure of Circadian Clock Protein KaiA from Synechococcus elongatus
Structural highlights
FunctionKAIA_SYNE7 Component of the KaiABC clock protein complex, which constitutes the main circadian regulator in cyanobacteria. The KaiABC complex may act as a promoter-nonspecific transcription regulator that represses transcription, possibly by acting on the state of chromosome compaction. In the complex, it enhances the phosphorylation status of KaiC. In contrast, the presence of KaiB in the complex decreases the phosphorylation status of KaiC, suggesting that KaiB acts by antagonizing the interaction between KaiA and KaiC. A KaiA dimer is sufficient to enhance KaiC hexamer phosphorylation.[1] [2] [3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe circadian clock found in Synechococcus elongatus, the most ancient circadian clock, is regulated by the interaction of three proteins, KaiA, KaiB, and KaiC. While the precise function of these proteins remains unclear, KaiA has been shown to be a positive regulator of the expression of KaiB and KaiC. The 2.0-A structure of KaiA of S. elongatus reported here shows that the protein is composed of two independently folded domains connected by a linker. The NH(2)-terminal pseudo-receiver domain has a similar fold with that of bacterial response regulators, whereas the COOH-terminal four-helix bundle domain is novel and forms the interface of the 2-fold-related homodimer. The COOH-terminal four-helix bundle domain has been shown to contain the KaiC binding site. The structure suggests that the KaiB binding site is covered in the dimer interface of the KaiA "closed" conformation, observed in the crystal structure, which suggests an allosteric regulation mechanism. Crystal structure of circadian clock protein KaiA from Synechococcus elongatus.,Ye S, Vakonakis I, Ioerger TR, LiWang AC, Sacchettini JC J Biol Chem. 2004 May 7;279(19):20511-8. Epub 2004 Mar 8. PMID:15007067[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|