1t0o
From Proteopedia
The structure of alpha-galactosidase from Trichoderma reesei complexed with beta-D-galactose
Structural highlights
FunctionQ92456_HYPJE Hydrolyzes a variety of simple alpha-D-galactoside as well as more complex molecules such as oligosaccharides and polysaccharides.[ARBA:ARBA00003969] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structures of alpha-galactosidase from the mesophilic fungus Trichoderma reesei and its complex with the competitive inhibitor, beta-d-galactose, have been determined at 1.54 A and 2.0 A resolution, respectively. The alpha-galactosidase structure was solved by the quick cryo-soaking method using a single Cs derivative. The refined crystallographic model of the alpha-galactosidase consists of two domains, an N-terminal catalytic domain of the (beta/alpha)8 barrel topology and a C-terminal domain which is formed by an antiparallel beta-structure. The protein contains four N-glycosylation sites located in the catalytic domain. Some of the oligosaccharides were found to participate in inter-domain contacts. The galactose molecule binds to the active site pocket located in the center of the barrel of the catalytic domain. Analysis of the alpha-galactosidase- galactose complex reveals the residues of the active site and offers a structural basis for identification of the putative mechanism of the enzymatic reaction. The structure of the alpha-galactosidase closely resembles those of the glycoside hydrolase family 27. The conservation of two catalytic Asp residues, identified for this family, is consistent with a double-displacement reaction mechanism for the alpha-galactosidase. Modeling of possible substrates into the active site reveals specific hydrogen bonds and hydrophobic interactions that could explain peculiarities of the enzyme kinetics. Crystal structure of alpha-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism.,Golubev AM, Nagem RA, Brandao Neto JR, Neustroev KN, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Savel'ev AN, Polikarpov I J Mol Biol. 2004 May 28;339(2):413-22. PMID:15136043[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|