2dko

From Proteopedia

Jump to: navigation, search

Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis

Structural highlights

2dko is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.06Å
Ligands:0QE, PHQ
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CASP3_HUMAN Involved in the activation cascade of caspases responsible for apoptosis execution. At the onset of apoptosis it proteolytically cleaves poly(ADP-ribose) polymerase (PARP) at a '216-Asp-|-Gly-217' bond. Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. Cleaves and activates caspase-6, -7 and -9. Involved in the cleavage of huntingtin. Triggers cell adhesion in sympathetic neurons through RET cleavage.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Caspases are cysteine proteases involved in the signalling cascades of programmed cell death in which caspase-3 plays a central role, since it propagates death signals from intrinsic and extrinsic stimuli to downstream targets. The atomic resolution (1.06 Angstroms) crystal structure of the caspase-3 DEVD-cmk complex reveals the structural basis for substrate selectivity in the S4 pocket. A low-barrier hydrogen bond is observed between the side-chains of the P4 inhibitor aspartic acid and Asp179 of the N-terminal tail of the symmetry related p12 subunit. Site-directed mutagenesis of Asp179 confirmed the significance of this residue in substrate recognition. In the 1.06 Angstroms crystal structure, a radiation damage induced rearrangement of the inhibitor methylketone moiety was observed. The carbon atom that in a substrate would represent the scissile peptide bond carbonyl carbon clearly shows a tetrahedral coordination and resembles the postulated tetrahedral intermediate of the acylation reaction.

Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis.,Ganesan R, Mittl PR, Jelakovic S, Grutter MG J Mol Biol. 2006 Jun 23;359(5):1378-88. Epub 2006 May 11. PMID:16787777[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
5 reviews cite this structure
Poreba et al. (2013)
No citations found

See Also

References

  1. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, et al.. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37-43. PMID:7596430 doi:http://dx.doi.org/10.1038/376037a0
  2. Cabrera JR, Bouzas-Rodriguez J, Tauszig-Delamasure S, Mehlen P. RET modulates cell adhesion via its cleavage by caspase in sympathetic neurons. J Biol Chem. 2011 Apr 22;286(16):14628-38. doi: 10.1074/jbc.M110.195461. Epub, 2011 Feb 28. PMID:21357690 doi:10.1074/jbc.M110.195461
  3. Ganesan R, Mittl PR, Jelakovic S, Grutter MG. Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis. J Mol Biol. 2006 Jun 23;359(5):1378-88. Epub 2006 May 11. PMID:16787777 doi:10.1016/j.jmb.2006.04.051

Contents


PDB ID 2dko

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools