2kis

From Proteopedia

Jump to: navigation, search

Solution structure of CA150 FF1 domain and FF1-FF2 interdomain linker

Structural highlights

2kis is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TCRG1_HUMAN Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

FF domains are poorly understood protein interaction modules that are present within eukaryotic transcription factors, such as CA150 (TCERG-1). The CA150 FF domains have been shown to mediate interactions with the phosphorylated C-terminal domain of RNA polymerase II (phosphoCTD) and a multitude of transcription factors and RNA processing proteins, and may therefore have a central role in organizing transcription. FF domains occur in tandem arrays of up to six domains, although it is not known whether they adopt higher-order structures. We have used the CA150 FF1+FF2 domains as a model system to examine whether tandem FF domains form higher-order structures in solution using NMR spectroscopy. In the solution structure of FF1 fused to the linker that joins FF1 to FF2, we observed that the highly conserved linker peptide is ordered and forms a helical extension of helix alpha3, suggesting that the interdomain linker might have a role in orientating FF1 relative to FF2. However, examination of the FF1+FF2 domains using relaxation NMR experiments revealed that although these domains are not rigidly orientated relative to one another, they do not tumble independently. Thus, the FF1+FF2 structure conforms to a dumbbell-shape in solution, where the helical interdomain linker maintains distance between the two dynamic FF domains without cementing their relative orientations. This model for FF domain organization within tandem arrays suggests a general mechanism by which individual FF domains can manoeuvre to achieve optimal recognition of flexible binding partners, such as the intrinsically-disordered phosphoCTD.

Structural studies of FF domains of the transcription factor CA150 provide insights into the organization of FF domain tandem arrays.,Murphy JM, Hansen DF, Wiesner S, Muhandiram DR, Borg M, Smith MJ, Sicheri F, Kay LE, Forman-Kay JD, Pawson T J Mol Biol. 2009 Oct 23;393(2):409-24. Epub 2009 Aug 26. PMID:19715701[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Sune C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA. CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol Cell Biol. 1997 Oct;17(10):6029-39. PMID:9315662
  2. Goldstrohm AC, Albrecht TR, Sune C, Bedford MT, Garcia-Blanco MA. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol. 2001 Nov;21(22):7617-28. PMID:11604498 doi:10.1128/MCB.21.22.7617-7628.2001
  3. Murphy JM, Hansen DF, Wiesner S, Muhandiram DR, Borg M, Smith MJ, Sicheri F, Kay LE, Forman-Kay JD, Pawson T. Structural studies of FF domains of the transcription factor CA150 provide insights into the organization of FF domain tandem arrays. J Mol Biol. 2009 Oct 23;393(2):409-24. Epub 2009 Aug 26. PMID:19715701 doi:10.1016/j.jmb.2009.08.049

Contents


PDB ID 2kis

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools