2nlw

From Proteopedia

Jump to: navigation, search

Solution structure of the RRM domain of human eukaryotic initiation factor 3b

Structural highlights

2nlw is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

EIF3B_HUMAN Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Mammalian eIF3 is a 700-kDa multiprotein complex essential for initiation of protein synthesis in eukaryotic cells. It consists of 13 subunits (eIF3a to -m), among which eIF3b serves as a major scaffolding protein. Here we report the solution structure of the N-terminal RNA recognition motif of human eIF3b (eIF3b-RRM) determined by NMR spectroscopy. The structure reveals a noncanonical RRM with a negatively charged surface in the beta-sheet area contradictory with potential RNA binding activity. Instead, eIF3j, which is required for stable 40 S ribosome binding of the eIF3 complex, specifically binds to the rear alpha-helices of the eIF3b-RRM, opposite to its beta-sheet surface. Moreover, we identify that an N-terminal 69-amino acid peptide of eIF3j is sufficient for binding to eIF3b-RRM and that this interaction is essential for eIF3b-RRM recruitment to the 40 S ribosomal subunit. Our results provide the first structure of an important subdomain of a core eIF3 subunit and detailed insights into protein-protein interactions between two eIF3 subunits required for stable eIF3 recruitment to the 40 S subunit.

Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit.,ElAntak L, Tzakos AG, Locker N, Lukavsky PJ J Biol Chem. 2007 Mar 16;282(11):8165-74. Epub 2006 Dec 26. PMID:17190833[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
12 reviews cite this structure
Hentze et al. (2018)
No citations found

See Also

References

  1. Chaudhuri J, Chakrabarti A, Maitra U. Biochemical characterization of mammalian translation initiation factor 3 (eIF3). Molecular cloning reveals that p110 subunit is the mammalian homologue of Saccharomyces cerevisiae protein Prt1. J Biol Chem. 1997 Dec 5;272(49):30975-83. PMID:9388245
  2. ElAntak L, Tzakos AG, Locker N, Lukavsky PJ. Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit. J Biol Chem. 2007 Mar 16;282(11):8165-74. Epub 2006 Dec 26. PMID:17190833 doi:10.1074/jbc.M610860200

Contents


PDB ID 2nlw

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools