2nvu
From Proteopedia
Structure of APPBP1-UBA3~NEDD8-NEDD8-MgATP-Ubc12(C111A), a trapped ubiquitin-like protein activation complex
Structural highlights
Function[NEDD8_HUMAN] Ubiquitin-like protein which plays an important role in cell cycle control and embryogenesis. Covalent attachment to its substrates requires prior activation by the E1 complex UBE1C-APPBP1 and linkage to the E2 enzyme UBE2M. Attachment of NEDD8 to cullins activates their associated E3 ubiquitin ligase activity, and thus promotes polyubiquitination and proteasomal degradation of cyclins and other regulatory proteins.[1] [2] [3] [ULA1_HUMAN] Regulatory subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Necessary for cell cycle progression through the S-M checkpoint. Overexpression of NAE1 causes apoptosis through deregulation of NEDD8 conjugation.[4] [5] [6] [UBC12_HUMAN] Accepts the ubiquitin-like protein NEDD8 from the UBA3-NAE1 E1 complex and catalyzes its covalent attachment to other proteins. The specific interaction with the E3 ubiquitin ligase RBX1, but not RBX2, suggests that the RBX1-UBE2M complex neddylates specific target proteins, such as CUL1, CUL2, CUL3 and CUL4. Involved in cell proliferation.[7] [8] [UBA3_HUMAN] Catalytic subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Down-regulates steroid receptor activity. Necessary for cell cycle progression.[9] [10] [11] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedUbiquitin-like proteins (UBLs) are conjugated by dynamic E1-E2-E3 enzyme cascades. E1 enzymes activate UBLs by catalysing UBL carboxy-terminal adenylation, forming a covalent E1 throught UBL thioester intermediate, and generating a thioester-linked E2 throught UBL product, which must be released for subsequent reactions. Here we report the structural analysis of a trapped UBL activation complex for the human NEDD8 pathway, containing NEDD8's heterodimeric E1 (APPBP1-UBA3), two NEDD8s (one thioester-linked to E1, one noncovalently associated for adenylation), a catalytically inactive E2 (Ubc12), and MgATP. The results suggest that a thioester switch toggles E1-E2 affinities. Two E2 binding sites depend on NEDD8 being thioester-linked to E1. One is unmasked by a striking E1 conformational change. The other comes directly from the thioester-bound NEDD8. After NEDD8 transfer to E2, reversion to an alternate E1 conformation would facilitate release of the E2 throught NEDD8 thioester product. Thus, transferring the UBL's thioester linkage between successive conjugation enzymes can induce conformational changes and alter interaction networks to drive consecutive steps in UBL cascades. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity.,Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA Nature. 2007 Jan 25;445(7126):394-8. Epub 2007 Jan 14. PMID:17220875[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Human | Holton, J M | Huang, D T | Hunt, H W | Ohi, M D | Schulman, B A | Zhuang, M | Adenylation | Atp | Conformational change | E1 | E2 | Ligase | Multifunction macromolecular complex | Nedd8 | Protein turnover | Switch | Thioester | Ubiquitin