2v6x

From Proteopedia

Jump to: navigation, search

Stractural insight into the interaction between ESCRT-III and Vps4

Structural highlights

2v6x is a 2 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.98Å
Ligands:MSE, SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

VPS4_YEAST Involved in the transport of biosynthetic membrane proteins from the prevacuolar/endosomal compartment to the vacuole. Required for multivesicular body (MVB) protein sorting. Catalyzes the ATP-dependent dissociation of class E VPS proteins from endosomal membranes, such as the disassembly of the ESCRT-III complex.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The AAA+ ATPases are essential for various activities such as membrane trafficking, organelle biogenesis, DNA replication, intracellular locomotion, cytoskeletal remodelling, protein folding and proteolysis. The AAA ATPase Vps4, which is central to endosomal traffic to lysosomes, retroviral budding and cytokinesis, dissociates ESCRT complexes (the endosomal sorting complexes required for transport) from membranes. Here we show that, of the six ESCRT--related subunits in yeast, only Vps2 and Did2 bind the MIT (microtubule interacting and transport) domain of Vps4, and that the carboxy-terminal 30 residues of the subunits are both necessary and sufficient for interaction. We determined the crystal structure of the Vps2 C terminus in a complex with the Vps4 MIT domain, explaining the basis for selective ESCRT-III recognition. MIT helices alpha2 and alpha3 recognize a (D/E)xxLxxRLxxL(K/R) motif, and mutations within this motif cause sorting defects in yeast. Our crystal structure of the amino-terminal domain of an archaeal AAA ATPase of unknown function shows that it is closely related to the MIT domain of Vps4. The archaeal ATPase interacts with an archaeal ESCRT-III-like protein even though these organisms have no endomembrane system, suggesting that the Vps4/ESCRT-III partnership is a relic of a function that pre-dates the divergence of eukaryotes and Archaea.

Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4.,Obita T, Saksena S, Ghazi-Tabatabai S, Gill DJ, Perisic O, Emr SD, Williams RL Nature. 2007 Oct 11;449(7163):735-9. PMID:17928861[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Zahn R, Stevenson BJ, Schroder-Kohne S, Zanolari B, Riezman H, Munn AL. End13p/Vps4p is required for efficient transport from early to late endosomes in Saccharomyces cerevisiae. J Cell Sci. 2001 May;114(Pt 10):1935-47. PMID:11329380
  2. Babst M, Sato TK, Banta LM, Emr SD. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 1997 Apr 15;16(8):1820-31. PMID:9155008 doi:10.1093/emboj/16.8.1820
  3. Babst M, Wendland B, Estepa EJ, Emr SD. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 1998 Jun 1;17(11):2982-93. PMID:9606181 doi:10.1093/emboj/17.11.2982
  4. Obita T, Saksena S, Ghazi-Tabatabai S, Gill DJ, Perisic O, Emr SD, Williams RL. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature. 2007 Oct 11;449(7163):735-9. PMID:17928861 doi:10.1038/nature06171

Contents


PDB ID 2v6x

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools