3vq1
From Proteopedia
Crystal structure of mouse TLR4/MD-2/lipid IVa complex
Structural highlights
DiseaseTLR4_MOUSE Note=The protein is encoded by the Lps locus, an important susceptibility locus, influencing the propensity to develop a disseminated Gram-negative infection. FunctionTLR4_MOUSE Cooperates with LY96 and CD14 to mediate the innate immune response to bacterial lipopolysaccharide (LPS). Acts via MYD88, TIRAP and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (By similarity).[1] Publication Abstract from PubMedLipopolysaccharide (LPS), also known as endotoxin, activates the innate immune response through toll-like receptor 4 (TLR4) and its coreceptor, MD-2. MD-2 has a unique hydrophobic cavity that directly binds to lipid A, the active center of LPS. Tetraacylated lipid IVa, a synthetic lipid A precursor, acts as a weak agonist to mouse TLR4/MD-2, but as an antagonist to human TLR4/MD-2. However, it remains unclear as to how LPS and lipid IVa show agonistic or antagonistic activities in a species-specific manner. The present study reports the crystal structures of mouse TLR4/MD-2/LPS and TLR4/MD-2/lipid IVa complexes at 2.5 and 2.7 A resolutions, respectively. Mouse TLR4/MD-2/LPS exhibited an agonistic "m"-shaped 2:2:2 complex similar to the human TLR4/MD-2/LPS complex. Mouse TLR4/MD-2/lipid IVa complex also showed an agonistic structural feature, exhibiting architecture similar to the 2:2:2 complex. Remarkably, lipid IVa in the mouse TLR4/MD-2 complex occupied nearly the same space as LPS, although lipid IVa lacked the two acyl chains. Human MD-2 binds lipid IVa in an antagonistic manner completely differently from the way mouse MD-2 does. Together, the results provide structural evidence of the agonistic property of lipid IVa on mouse TLR4/MD-2 and deepen understanding of the ligand binding and dimerization mechanism by the structurally diverse LPS variants. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2.,Ohto U, Fukase K, Miyake K, Shimizu T Proc Natl Acad Sci U S A. 2012 Apr 24. PMID:22532668[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|