4exp
From Proteopedia
Structure of mouse Interleukin-34 in complex with mouse FMS
Structural highlights
FunctionCSF1R_MOUSE Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] Publication Abstract from PubMedInterleukin-34 (IL-34) and colony stimulating factor-1 (CSF-1) both signal through the CSF-1R receptor tyrosine kinase, but they have no sequence homology, and their functions and signaling activities are not identical. We report the crystal structures of mouse IL-34 alone and in complex with the N-terminal three immunoglobulin-like domains (D1-D3) of mouse CSF-1R. IL-34 is structurally related to other helical hematopoietic cytokines, but contains two additional helices integrally associated with the four shared helices. The non-covalently linked IL-34 homodimer recruits two copies of CSF-1R on the sides of the helical bundles, with an overall shape similar to the CSF-1:CSF-1R complex, but the flexible linker between CSF-1R D2 and D3 allows these domains to clamp IL-34 and CSF-1 at different angles. Functional dissection of the IL-34:CSF-1R interface indicates that the hydrophobic interactions, rather than the salt bridge network, dominate the biological activity of IL-34. To degenerately recognize two ligands with completely different surfaces, CSF-1R apparently takes advantage of different subsets of a chemically inert surface that can be tuned to fit different ligand shapes. Differentiated signaling between IL-34 and CSF-1 is likely achieved by the relative thermodynamic independence of IL-34 vs. negative cooperativity of CSF-1 at the receptor-recognition sites, in combination with the difference in hydrophobicity which dictates a more stable IL-34:CSF-1R complex compared to the CSF-1:CSF-1R complex. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1.,Liu H, Leo C, Chen X, Wong BR, Williams LT, Lin H, He X Biochim Biophys Acta. 2012 May 8. PMID:22579672[17] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|
Categories: Large Structures | Mus musculus | Chen X | He X | Leo C | Lin H | Liu H | Williams LT | Wong BR