4v5l

From Proteopedia

Jump to: navigation, search

The structure of EF-Tu and aminoacyl-tRNA bound to the 70S ribosome with a GTP analog

Structural highlights

4v5l is a 10 chain structure with sequence from Escherichia coli K-12 and Thermus thermophilus HB8. This structure supersedes the now removed PDB entries 2xqd and 2xqe. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.1Å
Ligands:4SU, 5MU, 7MG, GCP, H2U, MG, MIA, OMC, PAR, PSU, ZN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RS12_THET8 With S4 and S5 plays an important role in translational accuracy (By similarity).[HAMAP-Rule:MF_00403_B] Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_00403_B]

Publication Abstract from PubMed

Protein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl-transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resolution. EF-Tu is in its active conformation, the switch I loop is ordered, and the catalytic histidine is coordinating the nucleophilic water in position for inline attack on the gamma-phosphate of GTP. This activated conformation is due to a critical and conserved interaction of the histidine with A2662 of the sarcin-ricin loop of the 23S ribosomal RNA. The structure suggests a universal mechanism for GTPase activation and hydrolysis in translational GTPases on the ribosome.

The mechanism for activation of GTP hydrolysis on the ribosome.,Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V Science. 2010 Nov 5;330(6005):835-8. PMID:21051640[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V. The mechanism for activation of GTP hydrolysis on the ribosome. Science. 2010 Nov 5;330(6005):835-8. PMID:21051640 doi:10.1126/science.1194460

Contents


PDB ID 4v5l

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools