5ola
From Proteopedia
Structure of mitochondrial transcription elongation complex in complex with elongation factor TEFM
Structural highlights
FunctionTEFM_HUMAN Transcription elongation factor which increases mitochondrial RNA polymerase processivity. Regulates transcription of the mitochondrial genome, including genes important for the oxidative phosphorylation machinery.[1] Publication Abstract from PubMedIn human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA. Mechanism of Transcription Anti-termination in Human Mitochondria.,Hillen HS, Parshin AV, Agaronyan K, Morozov YI, Graber JJ, Chernev A, Schwinghammer K, Urlaub H, Anikin M, Cramer P, Temiakov D Cell. 2017 Oct 7. pii: S0092-8674(17)31129-7. doi: 10.1016/j.cell.2017.09.035. PMID:29033127[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|
Categories: Homo sapiens | Large Structures | Synthetic construct | Agaronyan K | Anikin M | Chernev A | Cramer P | Graber JJ | Hillen HS | Morozov Y | Parshin AV | Schwinghammer K | Temiakov D | Urlaub H