6dik
From Proteopedia
Crystal structure of Bothropstoxin I (BthTX-I) complexed to Chicoric acid
Structural highlights
FunctionPA2H1_BOTJR Snake venom phospholipase A2 homolog that lacks enzymatic activity. Shows local myotoxic activity (PubMed:11018293, PubMed:12079495, PubMed:31906173). Induces inflammation, since it induces edema and leukocytes infiltration (PubMed:11018293, PubMed:31906173). In addition, it induces NLRP3 NLRP3, ASC (PYCARD), caspase-1 (CASP1), and IL-1beta (IL1B) gene expression in the gastrocnemius muscle, showing that it is able to activate NLRP3 inflammasome (PubMed:31906173). It also damages artificial and myoblast membranes by a calcium-independent mechanism, has bactericidal activity, and induces neuromuscular blockade (PubMed:27531710). A model of myotoxic mechanism has been proposed: an apo Lys49-PLA2 is activated by the entrance of a hydrophobic molecule (e.g. fatty acid) at the hydrophobic channel of the protein leading to a reorientation of a monomer (By similarity) (PubMed:27531710). This reorientation causes a transition between 'inactive' to 'active' states, causing alignment of C-terminal and membrane-docking sites (MDoS) side-by-side and putting the membrane-disruption sites (MDiS) in the same plane, exposed to solvent and in a symmetric position for both monomers (By similarity) (PubMed:27531710). The MDoS region stabilizes the toxin on membrane by the interaction of charged residues with phospholipid head groups (By similarity) (PubMed:27531710). Subsequently, the MDiS region destabilizes the membrane with penetration of hydrophobic residues (By similarity) (PubMed:27531710). This insertion causes a disorganization of the membrane, allowing an uncontrolled influx of ions (i.e. calcium and sodium), and eventually triggering irreversible intracellular alterations and cell death (By similarity) (PubMed:27531710).[UniProtKB:I6L8L6][1] [2] [3] [4] [5] [6] [7] [8] [9] Publication Abstract from PubMedBACKGROUND: Specific compounds found in vegetal species have been demonstrated to be efficient inhibitors of snake toxins, such as phospholipase A2-like (PLA2-like) proteins. These particular proteins, present in several species of vipers (Viperidae), induce a severe local myotoxic effect in prey and human victims, and this effect is often not efficiently neutralized by the regular serum therapy. PLA2-like proteins have been functionally and structurally studied since the early 1990s; however, a comprehensive molecular mechanism was proposed only recently. METHODS: Myographic and histological techniques were used to evaluate the inhibitory effect of chicoric acid (CA) against BthTX-I myotoxin. Isothermal titration calorimetry assays were used to measure the affinity between the inhibitor and the toxin. X-ray crystallography was used to reveal details of this interaction. RESULTS: CA prevented the blockade of indirectly evoked muscle contraction and inhibited muscle damage induced by BthTX-I. The inhibitor binds to the toxin with the highest affinity measured for a natural compound in calorimetric assays. The crystal structure and molecular dynamics simulations demonstrated that CA binds at the entrance of the hydrophobic channel of the toxin and binds to one of the clusters that participates in membrane disruption. CONCLUSIONS: CA prevents the myotoxic activity of the toxin, preventing its activation by simultaneous binding with two critical regions. GENERAL SIGNIFICANCE: CA is a potential myotoxic inhibitor to other PLA2-like proteins and a possible candidate to complement serum therapy. Structural basis of phospholipase A2-like myotoxin inhibition by chicoric acid, a novel potent inhibitor of ophidian toxins.,Cardoso FF, Borges RJ, Dreyer TR, Salvador GHM, Cavalcante WLG, Pai MD, Gallacci M, Fontes MRM Biochim Biophys Acta Gen Subj. 2018 Dec;1862(12):2728-2737. doi:, 10.1016/j.bbagen.2018.08.002. Epub 2018 Aug 4. PMID:30251662[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|