6tuy
From Proteopedia
Human LSD1/CoREST bound to the quinazoline inhibitor MC4106
Structural highlights
FunctionKDM1A_HUMAN Histone demethylase that demethylates both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity. Also acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in ANDR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A. Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1. Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development.[1] [2] [3] [4] [5] Publication Abstract from PubMedLSD1 is a histone lysine demethylase proposed as therapeutic target in cancer. Chemical modifications applied at C2, C4 and/or C7 positions of the quinazoline core of the previously reported dual LSD1/G9a inhibitor 1 led to a series of non-covalent, highly active, and selective LSD1 inhibitors (2-4 and 6-30) and to the dual LSD1/G9a inhibitor 5 that was more potent than 1 against LSD1. In THP-1 and MV4-11 leukemic cells, the most potent compounds (7, 8, and 29) showed antiproliferative effects at sub-micromolar level without significant toxicity at 1 muM in non-cancer AHH-1 cells. In MV4-11 cells, the new derivatives increased the levels of the LSD1 histone mark H3K4me2 and induced the re-expression of the CD86 gene silenced by LSD1, thereby confirming the inhibition of LSD1 at cellular level. In breast MDA-MB-231 as well as in rhabdomyosarcoma RD and RH30 cells, taken as examples of solid tumors, the same compounds displayed cell growth arrest in the same IC50 range, highlighting a crucial anticancer role for LSD1 inhibition and suggesting no added value for the simultaneous G9a inhibition in these tumor cell lines. Novel non-covalent LSD1 inhibitors endowed with anticancer effects in leukemia and solid tumor cellular models.,Menna M, Fiorentino F, Marrocco B, Lucidi A, Tomassi S, Cilli D, Romanenghi M, Cassandri M, Pomella S, Pezzella M, Del Bufalo D, Zeya Ansari MS, Tomasevic N, Mladenovic M, Viviano M, Sbardella G, Rota R, Trisciuoglio D, Minucci S, Mattevi A, Rotili D, Mai A Eur J Med Chem. 2022 Jul 5;237:114410. doi: 10.1016/j.ejmech.2022.114410. Epub, 2022 Apr 27. PMID:35525212[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|