6uvj

From Proteopedia

Jump to: navigation, search

Cocrystal of BRD4(D1) with a methyl carbamate thiazepane inhibitor

Structural highlights

6uvj is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.38Å
Ligands:DMS, EDO, QJ1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

BRD4_HUMAN Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.[1] [2]

Function

BRD4_HUMAN Plays a role in a process governing chromosomal dynamics during mitosis (By similarity).

Publication Abstract from PubMed

Fragment-based ligand discovery has been successful in targeting diverse proteins. Despite drug-like molecules having more 3D character, traditional fragment libraries are largely composed of flat, aromatic fragments. The use of 3D-enriched fragments for enhancing library diversity is underexplored especially against protein-protein interactions. Here, we evaluate using 3D-enriched fragments against bromodomains. Bromodomains are highly ligandable, but selectivity remains challenging, particularly for bromodomain and extraterminal (BET) family bromodomains. We screened a 3D-enriched fragment library against BRD4(D1) via (1)H CPMG NMR with a protein-observed (19)F NMR secondary assay. The screen led to 29% of the hits that are selective over two related bromodomains, BRDT(D1) and BPTF, and the identification of underrepresented chemical bromodomain inhibitor scaffolds. Initial structure-activity relationship studies guided by X-ray crystallography led to a ligand-efficient thiazepane, with good selectivity and affinity for BET bromodomains. These results suggest that the incorporation of 3D-enriched fragments to increase library diversity can benefit bromodomain screening.

Evaluating the Advantages of Using 3D-Enriched Fragments for Targeting BET Bromodomains.,Johnson JA, Nicolaou CA, Kirberger SE, Pandey AK, Hu H, Pomerantz WCK ACS Med Chem Lett. 2019 Nov 22;10(12):1648-1654. doi:, 10.1021/acsmedchemlett.9b00414. eCollection 2019 Dec 12. PMID:31857841[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003 Jan 15;63(2):304-7. PMID:12543779
  2. French CA, Miyoshi I, Aster JC, Kubonishi I, Kroll TG, Dal Cin P, Vargas SO, Perez-Atayde AR, Fletcher JA. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am J Pathol. 2001 Dec;159(6):1987-92. PMID:11733348 doi:10.1016/S0002-9440(10)63049-0
  3. Johnson JA, Nicolaou CA, Kirberger SE, Pandey AK, Hu H, Pomerantz WCK. Evaluating the Advantages of Using 3D-Enriched Fragments for Targeting BET Bromodomains. ACS Med Chem Lett. 2019 Nov 22;10(12):1648-1654. doi:, 10.1021/acsmedchemlett.9b00414. eCollection 2019 Dec 12. PMID:31857841 doi:http://dx.doi.org/10.1021/acsmedchemlett.9b00414

Contents


PDB ID 6uvj

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools