| Structural highlights
Disease
VHL_HUMAN Defects in VHL are a cause of susceptibility to pheochromocytoma (PCC) [MIM:171300. A catecholamine-producing tumor of chromaffin tissue of the adrenal medulla or sympathetic paraganglia. The cardinal symptom, reflecting the increased secretion of epinephrine and norepinephrine, is hypertension, which may be persistent or intermittent. Defects in VHL are the cause of von Hippel-Lindau disease (VHLD) [MIM:193300. VHLD is a dominantly inherited familial cancer syndrome characterized by the development of retinal angiomatosis, cerebellar and spinal hemangioblastoma, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumors. VHL type 1 is without pheochromocytoma, type 2 is with pheochromocytoma. VHL type 2 is further subdivided into types 2A (pheochromocytoma, retinal angioma, and hemangioblastomas without renal cell carcinoma and pancreatic cyst) and 2B (pheochromocytoma, retinal angioma, and hemangioblastomas with renal cell carcinoma and pancreatic cyst). VHL type 2C refers to patients with isolated pheochromocytoma without hemangioblastoma or renal cell carcinoma. The estimated incidence is 3/100000 births per year and penetrance is 97% by age 60 years.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [:][15] [16] [17] Defects in VHL are the cause of familial erythrocytosis type 2 (ECYT2) [MIM:263400; also called VHL-dependent polycythemia or Chuvash type polycythemia. ECYT2 is an autosomal recessive disorder characterized by an increase in serum red blood cell mass, hypersensitivity of erythroid progenitors to erythropoietin, increased erythropoietin serum levels, and normal oxygen affinity. Patients with ECYT2 carry a high risk for peripheral thrombosis and cerebrovascular events.[18] [19] Defects in VHL are a cause of renal cell carcinoma (RCC) [MIM:144700. Renal cell carcinoma is a heterogeneous group of sporadic or hereditary carcinoma derived from cells of the proximal renal tubular epithelium. It is subclassified into clear cell renal carcinoma (non-papillary carcinoma), papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct carcinoma with medullary carcinoma of the kidney, and unclassified renal cell carcinoma.[20]
Function
VHL_HUMAN Involved in the ubiquitination and subsequent proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Seems to act as target recruitment subunit in the E3 ubiquitin ligase complex and recruits hydroxylated hypoxia-inducible factor (HIF) under normoxic conditions. Involved in transcriptional repression through interaction with HIF1A, HIF1AN and histone deacetylases. Ubiquitinates, in an oxygen-responsive manner, ADRB2.[21] [22] [23]
Publication Abstract from PubMed
The Bcl-2 family of proteins, such as Bcl-xL and Bcl-2, play key roles in cancer cell survival. Structural studies of Bcl-xL formed the foundation for the development of the first Bcl-2 family inhibitors and FDA approved drugs. Recently, Proteolysis Targeting Chimeras (PROTACs) that degrade Bcl-xL have been proposed as a therapeutic modality with the potential to enhance potency and reduce toxicity versus antagonists. However, no ternary complex structures of Bcl-xL with a PROTAC and an E3 ligase have been successfully determined to guide this approach. Herein, we report the design, characterization, and X-ray structure of a VHL E3 ligase-recruiting Bcl-xL PROTAC degrader. The 1.9 A heterotetrameric structure, composed of (ElonginB:ElonginC:VHL):PROTAC:Bcl-xL, reveals an extensive network of neo-interactions, between the E3 ligase and the target protein, and between noncognate parts of the PROTAC and partner proteins. This work illustrates the challenges associated with the rational design of bifunctional molecules where interactions involve composite interfaces.
Structural Insights into PROTAC-Mediated Degradation of Bcl-xL.,Chung CW, Dai H, Fernandez E, Tinworth CP, Churcher I, Cryan J, Denyer J, Harling JD, Konopacka A, Queisser MA, Tame CJ, Watt G, Jiang F, Qian D, Benowitz AB ACS Chem Biol. 2020 Sep 18;15(9):2316-2323. doi: 10.1021/acschembio.0c00266. Epub, 2020 Aug 13. PMID:32697072[24]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Feldman DE, Thulasiraman V, Ferreyra RG, Frydman J. Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol Cell. 1999 Dec;4(6):1051-61. PMID:10635329
- ↑ Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L, et al.. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993 May 28;260(5112):1317-20. PMID:8493574
- ↑ Crossey PA, Richards FM, Foster K, Green JS, Prowse A, Latif F, Lerman MI, Zbar B, Affara NA, Ferguson-Smith MA, et al.. Identification of intragenic mutations in the von Hippel-Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum Mol Genet. 1994 Aug;3(8):1303-8. PMID:7987306
- ↑ Chen F, Kishida T, Yao M, Hustad T, Glavac D, Dean M, Gnarra JR, Orcutt ML, Duh FM, Glenn G, et al.. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat. 1995;5(1):66-75. PMID:7728151 doi:http://dx.doi.org/10.1002/humu.1380050109
- ↑ . Germline mutations in the von Hippel-Lindau disease (VHL) gene in Japanese VHL. Clinical Research Group for VHL in Japan. Hum Mol Genet. 1995 Dec;4(12):2233-7. PMID:8634692
- ↑ Crossey PA, Eng C, Ginalska-Malinowska M, Lennard TW, Wheeler DC, Ponder BA, Maher ER. Molecular genetic diagnosis of von Hippel-Lindau disease in familial phaeochromocytoma. J Med Genet. 1995 Nov;32(11):885-6. PMID:8592333
- ↑ Eng C, Crossey PA, Mulligan LM, Healey CS, Houghton C, Prowse A, Chew SL, Dahia PL, O'Riordan JL, Toledo SP, et al.. Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J Med Genet. 1995 Dec;32(12):934-7. PMID:8825918
- ↑ Maher ER, Webster AR, Richards FM, Green JS, Crossey PA, Payne SJ, Moore AT. Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations. J Med Genet. 1996 Apr;33(4):328-32. PMID:8730290
- ↑ Zbar B, Kishida T, Chen F, Schmidt L, Maher ER, Richards FM, Crossey PA, Webster AR, Affara NA, Ferguson-Smith MA, Brauch H, Glavac D, Neumann HP, Tisherman S, Mulvihill JJ, Gross DJ, Shuin T, Whaley J, Seizinger B, Kley N, Olschwang S, Boisson C, Richard S, Lips CH, Lerman M, et al.. Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat. 1996;8(4):348-57. PMID:8956040 doi:<348::AID-HUMU8>3.0.CO;2-3 10.1002/(SICI)1098-1004(1996)8:4<348::AID-HUMU8>3.0.CO;2-3
- ↑ Li C, Weber G, Ekman P, Lagercrantz J, Norlen BJ, Akerstrom G, Nordenskjold M, Bergerheim US. Germline mutations detected in the von Hippel-Lindau disease tumor suppressor gene by Southern blot and direct genomic DNA sequencing. Hum Mutat. 1998;Suppl 1:S31-3. PMID:9452032
- ↑ Mandich P, Montera M, Bellone E, Trojani A, Daniele S, Ajmar F. Three novel mutations in the Von Hippel-Lindau tumour suppressor gene in Italian patients. Hum Mutat. 1998;Suppl 1:S268-70. PMID:9452106
- ↑ Martin R, Hockey A, Walpole I, Goldblatt J. Variable penetrance of familial pheochromocytoma associated with the von Hipple Lindau gene mutation, S68W. Mutations in brief no. 150. Online. Hum Mutat. 1998;12(1):71. PMID:10627136 doi:<71::AID-HUMU14>3.0.CO;2-A 10.1002/(SICI)1098-1004(1998)12:1<71::AID-HUMU14>3.0.CO;2-A
- ↑ Stolle C, Glenn G, Zbar B, Humphrey JS, Choyke P, Walther M, Pack S, Hurley K, Andrey C, Klausner R, Linehan WM. Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum Mutat. 1998;12(6):417-23. PMID:9829911 doi:<417::AID-HUMU8>3.0.CO;2-K 10.1002/(SICI)1098-1004(1998)12:6<417::AID-HUMU8>3.0.CO;2-K
- ↑ Olschwang S, Richard S, Boisson C, Giraud S, Laurent-Puig P, Resche F, Thomas G. Germline mutation profile of the VHL gene in von Hippel-Lindau disease and in sporadic hemangioblastoma. Hum Mutat. 1998;12(6):424-30. PMID:9829912 doi:<424::AID-HUMU9>3.0.CO;2-H 10.1002/(SICI)1098-1004(1998)12:6<424::AID-HUMU9>3.0.CO;2-H
- ↑ Bradley JF, Collins DL, Schimke RN, Parrott HN, Rothberg PG. Two distinct phenotypes caused by two different missense mutations in the same codon of the VHL gene. Am J Med Genet. 1999 Nov 19;87(2):163-7. PMID:10533030
- ↑ Gallou C, Joly D, Mejean A, Staroz F, Martin N, Tarlet G, Orfanelli MT, Bouvier R, Droz D, Chretien Y, Marechal JM, Richard S, Junien C, Beroud C. Mutations of the VHL gene in sporadic renal cell carcinoma: definition of a risk factor for VHL patients to develop an RCC. Hum Mutat. 1999;13(6):464-75. PMID:10408776 doi:<464::AID-HUMU6>3.0.CO;2-A 10.1002/(SICI)1098-1004(1999)13:6<464::AID-HUMU6>3.0.CO;2-A
- ↑ Abbott MA, Nathanson KL, Nightingale S, Maher ER, Greenstein RM. The von Hippel-Lindau (VHL) germline mutation V84L manifests as early-onset bilateral pheochromocytoma. Am J Med Genet A. 2006 Apr 1;140(7):685-90. PMID:16502427 doi:10.1002/ajmg.a.31116
- ↑ Pastore Y, Jedlickova K, Guan Y, Liu E, Fahner J, Hasle H, Prchal JF, Prchal JT. Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. Am J Hum Genet. 2003 Aug;73(2):412-9. Epub 2003 Jul 3. PMID:12844285 doi:S0002-9297(07)61930-2
- ↑ Pastore YD, Jelinek J, Ang S, Guan Y, Liu E, Jedlickova K, Krishnamurti L, Prchal JT. Mutations in the VHL gene in sporadic apparently congenital polycythemia. Blood. 2003 Feb 15;101(4):1591-5. Epub 2002 Oct 10. PMID:12393546 doi:10.1182/blood-2002-06-1843
- ↑ Wiesener MS, Seyfarth M, Warnecke C, Jurgensen JS, Rosenberger C, Morgan NV, Maher ER, Frei U, Eckardt KU. Paraneoplastic erythrocytosis associated with an inactivating point mutation of the von Hippel-Lindau gene in a renal cell carcinoma. Blood. 2002 May 15;99(10):3562-5. PMID:11986208
- ↑ Iliopoulos O, Ohh M, Kaelin WG Jr. pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11661-6. PMID:9751722
- ↑ Tanimoto K, Makino Y, Pereira T, Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000 Aug 15;19(16):4298-309. PMID:10944113 doi:10.1093/emboj/19.16.4298
- ↑ Xie L, Xiao K, Whalen EJ, Forrester MT, Freeman RS, Fong G, Gygi SP, Lefkowitz RJ, Stamler JS. Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL. Sci Signal. 2009 Jul 7;2(78):ra33. doi: 10.1126/scisignal.2000444. PMID:19584355 doi:10.1126/scisignal.2000444
- ↑ Chung CW, Dai H, Fernandez E, Tinworth CP, Churcher I, Cryan J, Denyer J, Harling JD, Konopacka A, Queisser MA, Tame CJ, Watt G, Jiang F, Qian D, Benowitz AB. Structural Insights into PROTAC-Mediated Degradation of Bcl-xL. ACS Chem Biol. 2020 Sep 18;15(9):2316-2323. doi: 10.1021/acschembio.0c00266. Epub, 2020 Aug 13. PMID:32697072 doi:http://dx.doi.org/10.1021/acschembio.0c00266
|