7e23

From Proteopedia

Jump to: navigation, search

SARS-CoV-2 spike in complex with the CA521 neutralizing antibody Fab (focused refinement on Fab-RBD)

Structural highlights

7e23 is a 3 chain structure with sequence from Homo sapiens and Severe acute respiratory syndrome coronavirus 2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.3Å
Ligands:NAG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SPIKE_SARS2 attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099][1] [2] [3] mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099]

Publication Abstract from PubMed

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic, which has resulted in more than two million deaths at 2021 February . There is currently no approved therapeutics for treating COVID-19. The SARS-CoV-2 Spike protein is considered a key therapeutic target by many researchers. Here we describe the identification of several monoclonal antibodies that target SARS-CoV-2 Spike protein. One human antibody, CA521(FALA), demonstrated neutralization potential by immunizing human antibody transgenic mice. CA521(FALA) showed potent SARS-CoV-2-specific neutralization activity against SARS-CoV-2 pseudovirus and authentic SARS-CoV-2 infection in vitro. CA521(FALA) also demonstrated having a long half-life of 9.5 days in mice and 9.3 days in rhesus monkeys. CA521(FALA) inhibited SARS-CoV-2 infection in SARS-CoV-2 susceptible mice at a therapeutic setting with virus titer of the lung reduced by 4.5 logs. Structural analysis by cryo-EM revealed that CA521(FALA) recognizes an epitope overlapping with angiotensin converting enzyme 2 (ACE2)-binding sites in SARS-CoV-2 RBD in the Spike protein. CA521(FALA) blocks the interaction by binding all three RBDs of one SARS-CoV-2 spike trimer simultaneously. These results demonstrate the importance for antibody-based therapeutic interventions against COVID-19 and identifies CA521(FALA) a promising antibody that reacts with SARS-CoV-2 Spike protein to strongly neutralize its activity.

Structure and function analysis of a potent human neutralizing antibody CA521(FALA) against SARS-CoV-2.,Song D, Wang W, Dong C, Ning Z, Liu X, Liu C, Du G, Sha C, Wang K, Lu J, Sun B, Zhao Y, Wang Q, Xu H, Li Y, Shen Z, Jiao J, Wang R, Tian J, Liu W, Wang L, Deng YQ, Dou C Commun Biol. 2021 Apr 23;4(1):500. doi: 10.1038/s42003-021-02029-w. PMID:33893388[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Feb 19. pii: science.abb2507. doi: 10.1126/science.abb2507. PMID:32075877 doi:http://dx.doi.org/10.1126/science.abb2507
  2. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020, Mar 5. PMID:32142651 doi:http://dx.doi.org/10.1016/j.cell.2020.02.052
  3. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Mar 6. pii: S0092-8674(20)30262-2. doi: 10.1016/j.cell.2020.02.058. PMID:32155444 doi:http://dx.doi.org/10.1016/j.cell.2020.02.058
  4. Song D, Wang W, Dong C, Ning Z, Liu X, Liu C, Du G, Sha C, Wang K, Lu J, Sun B, Zhao Y, Wang Q, Xu H, Li Y, Shen Z, Jiao J, Wang R, Tian J, Liu W, Wang L, Deng YQ, Dou C. Structure and function analysis of a potent human neutralizing antibody CA521(FALA) against SARS-CoV-2. Commun Biol. 2021 Apr 23;4(1):500. PMID:33893388 doi:10.1038/s42003-021-02029-w

Contents


PDB ID 7e23

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools