7vmu

From Proteopedia

Jump to: navigation, search

Crystal Structure of SARS-CoV Spike Receptor-Binding Domain Complexed with Neutralizing Antibody

Structural highlights

7vmu is a 2 chain structure with sequence from Homo sapiens and Severe acute respiratory syndrome coronavirus 2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.89Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SPIKE_SARS2 attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099][1] [2] [3] mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099]

Publication Abstract from PubMed

BACKGROUND: Neutralizing antibodies are approved drugs to treat coronavirus disease-2019 (COVID-19) patients, yet mutations in severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants may reduce the antibody neutralizing activity. New monoclonal antibodies (mAbs) and antibody remolding strategies are recalled in the battle with COVID-19 epidemic. RESULTS: We identified multiple mAbs from antibody phage display library made from COVID-19 patients and further characterized the R3P1-E4 clone, which effectively suppressed SARS-CoV-2 infection and rescued the lethal phenotype in mice infected with SARS-CoV-2. Crystal structural analysis not only explained why R3P1-E4 had selectively reduced binding and neutralizing activity to SARS-CoV-2 variants carrying K417 mutations, but also allowed us to engineer mutant antibodies with improved neutralizing activity against these variants. Thus, we screened out R3P1-E4 mAb which inhibits SARS-CoV-2 and related mutations in vitro and in vivo. Antibody engineering improved neutralizing activity of R3P1-E4 against K417 mutations. CONCLUSION: Our studies have outlined a strategy to identify and engineer neutralizing antibodies against SARS-CoV-2 variants.

Antibody engineering improves neutralization activity against K417 spike mutant SARS-CoV-2 variants.,Li L, Gao M, Jiao P, Zu S, Deng YQ, Wan D, Cao Y, Duan J, Aliyari SR, Li J, Shi Y, Rao Z, Qin CF, Guo Y, Cheng G, Yang H Cell Biosci. 2022 May 17;12(1):63. doi: 10.1186/s13578-022-00794-7. PMID:35581593[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Feb 19. pii: science.abb2507. doi: 10.1126/science.abb2507. PMID:32075877 doi:http://dx.doi.org/10.1126/science.abb2507
  2. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020, Mar 5. PMID:32142651 doi:http://dx.doi.org/10.1016/j.cell.2020.02.052
  3. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Mar 6. pii: S0092-8674(20)30262-2. doi: 10.1016/j.cell.2020.02.058. PMID:32155444 doi:http://dx.doi.org/10.1016/j.cell.2020.02.058
  4. Li L, Gao M, Jiao P, Zu S, Deng YQ, Wan D, Cao Y, Duan J, Aliyari SR, Li J, Shi Y, Rao Z, Qin CF, Guo Y, Cheng G, Yang H. Antibody engineering improves neutralization activity against K417 spike mutant SARS-CoV-2 variants. Cell Biosci. 2022 May 17;12(1):63. doi: 10.1186/s13578-022-00794-7. PMID:35581593 doi:http://dx.doi.org/10.1186/s13578-022-00794-7

Contents


PDB ID 7vmu

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools