Alpha-glucosidase
From Proteopedia
FunctionAlpha glucosidase (AGS) or maltase breaks down the 1,4-α bonds in starch or disaccharides to produce glucose. Maltase breaks down maltose. Isomaltase or sucrase-isomaltase or oligo-1,6-glucosidase breaks the 1,6 bond.[1]
For details see Sucrase-isomaltase. See also Kennedy research and Carbohydrate Metabolism. DiseaseAGS deficiency is the cause of Pompe Disease. AGS inhibitors are used as anti-diabetic drugs and can potentially prevent the fusion of HIV and hepatitis B virus to cells. Structural highlightsα-D-glucose binding site (PDB code 3a4a).[5] Water molecules shown as red spheres. Ca coordination site. 3D structures of α-glucosidaseAlpha-glucosidase 3D structures
|
|
References
- ↑ Gloster TM, Turkenburg JP, Potts JR, Henrissat B, Davies GJ. Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora. Chem Biol. 2008 Oct 20;15(10):1058-67. Epub 2008 Oct 9. PMID:18848471 doi:10.1016/j.chembiol.2008.09.005
- ↑ Ren L, Qin X, Cao X, Wang L, Bai F, Bai G, Shen Y. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell. 2011 Oct;2(10):827-36. Epub 2011 Nov 6. PMID:22058037 doi:10.1007/s13238-011-1105-3
- ↑ Fukuda T, Roberts A, Plotz PH, Raben N. Acid alpha-glucosidase deficiency (Pompe disease). Curr Neurol Neurosci Rep. 2007 Jan;7(1):71-7. PMID:17217857 doi:10.1007/s11910-007-0024-4
- ↑ Rajan SS, Yang X, Collart F, Yip VL, Withers SG, Varrot A, Thompson J, Davies GJ, Anderson WF. Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure. 2004 Sep;12(9):1619-29. PMID:15341727 doi:10.1016/j.str.2004.06.020
- ↑ Yamamoto K, Miyake H, Kusunoki M, Osaki S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J. 2010 Oct;277(20):4205-14. doi: 10.1111/j.1742-4658.2010.07810.x., Epub 2010 Aug 31. PMID:20812985 doi:10.1111/j.1742-4658.2010.07810.x